ILE RPG/400

AS/400
Reference

.
. @@@n&?

o

SC09-1526-00

AS/400

ILE RPG/400
Reference

Version 3

SC09-1526-00

Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page Xxvii.

First Edition (September 1994)

This edition to Version 3 Release 1 Modification 0, of IBM Application System/400 ILE RPG/400 (program 5763-RG1)
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Canada Ltd. Laboratory, Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments elec-
tronically to IBM. See “Communicating Your Comments to IBM” for a description of the methods. This page imme-
diately precedes the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Contents

Notices Xvii
Programming Interface Information XVii
Trademarks and Service Marks L XVii
About This Reference Xix
Who Should Use This Reference Xix
RPG IV Concepts 1
Chapter 1. Symbolic Names and Reserved Words 3
Symbolic Names 3
Array Names 3
Data Structure Names 4
EXCEPT Names i 4
Field Names 4
KLISTNames e 4
Labels e 4
Named Constants 4
PLISTNames 4
Record Names 4
Subroutine Names 5
Table Names 5
RPG iV Words with Speciai Functions/Reserved Words 5
User Date Special Words 6
Rules forUserDate 6
PAGE, PAGE1-PAGE7 7
Rules for PAGE, PAGE1-PAGE7 7
Chapter 2. Compiler Directives 9
[TITLE (Positions 7-12) e 9
[EJECT (Positions 7-12) 9
[SPACE (Positions 7-12) 9
J/COPY (Positions 7-11) 10
Results of the /COPY during Compile 11
Chapter 3. ProgramCycle 13
General RPG IV Program Cycle 13
Detailed RPG IV Program Cycle 15
Detailed RPG IV Object Program Cycle 18
Initialization Subroutine 21
Match Fields Routine 22
Overflow Routine 23
Lookahead Routine 24
Ending a Program without a Primary File 24
Program Control of File Processing 24
RPG IV Exception/Error Handling Routine 27
Chapter 4. RPG IV Indicators 29
Indicators Defined on RPG IV Specifications 29

© Copyright IBM Corp. 1994

Overflow Indicators 29

Record Identifying Indicators oL 30
Rules for Assigning Record Identifying Indicators 30
Control Level Indicators (L1-L9) 32
Rules for Control Level Indicators 33

Split Control Field 38
Field Indicators 39
Rules for Assigning Field Indicators 40
Resulting Indicators 40
Rules for Assigning Resulting Indicators 41
Indicators Not Defined on the RPG IV Specifications 42
External Indicators 42
Internal Indicators 43
First Page Indicator (1P) 43

Last Record Indicator (LR) 43
Matching Record Indicator (MR) 43
Return Indicator (RT) 44
Using Indicators 44
File Conditioning 44
Rules for File Conditioning 45
Field Record Relation Indicators 45
Assigning Field Record Relation Indicators 45
Function Key Indicators 47
Halt Indicators (H1-H9), 48
Indicators Conditioning Calculations 49
Positions7and 8 49
Positions 9-11 49
Indicators Used in Expressions 52
Indicators Conditioning Qutput 52
Indicators Referredto AsData, 56
MIN 56
MINXX 56
Additional Rules 56
Summary of Indicators 58
Chapter 5. Exception/Error Data Structures and Subroutines 61
File Exception/Errors 61
File Information Data Structure 61
File Feedback Information 61
Open Feedback Information 64
Input/Output Feedback Information 65
Device Specific Feedback Information 67

Get Attributes Feedback Information 69
Blocking Considerations 73

File Exception/Error Subroutine (INFSR) 73
Status Codes 75
File Status Codes 75
Program Exception/Errors 78
Program Status Data Structure 78
Program Status Codes 81
Program Exception/Error Subroutine 83
Chapter 6. General File Considerations 85
Primary/Secondary Multi-file Processing 85

iV ILE RPG/400 Reference

Multi-file Processing with No Match Fields 85

Multi-file Processing with Match Fields 85
Assigning Match Field Values M1-M9) 86
Processing Matching Records 90

Alternate Collating Sequence 93

Changing the Collating Sequence 94

Using an External Collating Sequence 94

Specifying an Alternate Collating Sequence in Your Source 94

Formatting the Alternate Collating Sequence Records 95

File Translation 95

Specifying File Translation 96

Translating One Fileor All Files 96

Translating More Than One File 96
Specifyingthe Files 97
Specifyingthe Table 97

Data 99
Chapter 7. Data Types and Data Formats 101
Character Data Type 101
Numeric Data Type 101
Packed-Decimal Format 101
Determining the Digit Length of a Packed-Decimal Field 102
Zoned-Decimal Format 103
Binary Format 104
Program-Described File 104
Externally Described File 104
Date Data e 105
Time Data e 107
Timestamp Data 108
Graphic Data Type 108
Basing Pointer Data Type 109

Examples 109
Procedure Pointer Data Type 112

Examples 112
Unsupported Database Data-Types 113

Null Values/Null Capable Fields 113

Variable-Length Fields 114

Error Handling for Database Data Mapping Errors 117

Chapter 8. Literals and Named Constants 119
Literals 119
Named Constants 121

Rules for Named Constants 121

Example of Defining a Named Constant 121

Figurative Constants 121

Rules for Figurative Constants 122
Chapter 9. Data Structures 125
Special Data Structures 126

Data Area Data Structure 126

File Information Data Structure 126

Program-Status Data Structure 126

Contents V

Vi

Data Structure Examples

Chapter 10. Using Arrays and Tables
Arrays .
Array Name and Index
The Essential Array Specifications
Coding a Run-Time Array
Loading a Run-Time Array
Loading a Run-Time Array in One Source Record
Loading a Run-Time Array Using Multiple Source Records
Sequencing Run-Time Arrays
Coding a Compile-Time Array
Loading a Compile-Time Array
Rules for Array Source Records
Coding a Prerun-Time Array
Loading a Prerun-Time Array,
Sequence Checking for Character Arrays
Initializing Arrays
Run-Time Arrays
Compile-Time and Prerun-Time Arrays
Defining Related Arrays
Searching Arrays
Searching an Array Withoutan Index
Searching an Array withanindex
Using Arrays
Specifying an Array in Calculations
Sorting Arrays
Sorting using part of the arrayasakey
Array Output
Editing Entire Arrays
Tables
LOOKUP withOne Table
LOOKUP with Two Tables
Specifying the Table Element Found in a LOOKUP Operation

Chapter 11. Editing Numeric Fields
Edit Codes
Simple Edit Codes
Combination Edit Codes
User-Defined Edit Codes
Editing Considerations L.
Summary of Edit Codes
EditWords
Howto Code an Edit Word
Parts ofan Edit Word
Forming the Body of an EditWord
Forming the Status ofan EditWord
Formatting the Expansion of an EditWord
Summary of Coding Rules for Edit Words
Editing Externally Described Files

Chapter 12. Initialization of Data and Initialization Subroutine
Initialization

ILE RPG/400 Reference

CLEAR and RESET Operation Codes 163
Data Initialization 163
Specifications 165
Chapter 13. General Information 167
Common Entries 168
Syntax of keywords 168
Continuation rules 169
Control specification keyword field 170

File description specification keyword field 170
Definition specification keyword field 170
Calculation specification Extended Factor-2 171
Output specification constant/editword field 171
Chapter 14. Control Specifications 173
Using a Data Area as a Control Specification 173
Control Specification Statement L. 173
Position 6 (Form Type) 174
Positions 7-80 (Keywords) 174
ALTSEQ{(*NONE *SRC *EXT)} 174
CURSYM('sym') 174
DATEDIT(fmt{separator}) 174
DATFMT(fmt{separator}) 174
DEBUG{(*NO *YES)} 175
DECEDIT(value') 175
DFTNAME(rpg_name) 175
FORMSALIGN{(*NO *YES)} 175
FTRANS{(*NONE *SRC)} 176
TIMFMT (fmt{separator}) 176
Chapter 15. File Description Specifications 177
File Description Specification Statement 178
File Description Continuation Line 178
Position 6 (Form Type) 178
Positions 7-16 (File Name) 178
Program Described File 179
Externally Described File 179
Position 17 (File Type) 179
Input Files 179
Output Files 179
Update Files 179
Combined Files 180
Position 18 (File Designation) 180
Primary File 180
Secondary File 180
Record Address File (RAF) 180
Arrayor Table File 181

Full Procedural File 181
Position 19 (Endof File) 181
Position 20 (File Addition) 182
Position 21 (Sequence) 182
Position 22 (File Format) 183
Contents Vi

Positions 23-27 (Record Length) 183
Position 28 (Limits Processing) L. 184
Positions 29-33 (Length of Key or Record Address) 184
Position 34 (Record Address Type) 185
Blank = Non-keyed Processing 185
A=CharacterKeys 186
P=PackedKeys 186

G =GraphicKeys 186
K=Key 186
D=DateKeys 186
T=TimeKeys 187
Z=Timestamp Keys 187
Position 35 (File Organization) 187
Blank = Non-keyed Program-Described File 187

I =Indexed File 187

T =Record Address File 187
Positions 36-42 (Device), 188
Position 43 (Reserved) 188
Positions 44-80 (Keywords) 188
File Description Keywords 189
COMMIT{(rpg_name)} 189
DATFMT (format{separator}) 189
DEVID(fieldname) 190
EXTIND(*INUX)o 190
FORMLEN(number) 190
FORMOFL(number) 191
IGNORE(recformat{:recformat...}) 191
INCLUDE(recformat{:recformat...}) 191
INFDS(DSname) 191
INFSR(SUBRname) 191
KEYLOC(number), 192
MAXDEV(*ONLY/*FILE) 192
OFLIND(*INXX) o o 192
PASS(*NOIND) 192
PGMNAME(program_name) 193
PLIST(Plist_name) 193
PREFIX(prefix_name) 193
PRTCTL(data_struct{*COMPAT}) 193
Extended Length PRTCTL Data Structure 194
*COMPAT PRTCTL Data Structure 194
RAFDATA(filename) 194
RECNO(fieldname) 195
RENAME(Ext_format:Int_format) 195
SAVEDS(DSname), 195
SAVEIND(number), 195
SFILE(recformat:rrfield) 196
SLN(number) 196
TIMFMT (format{separator}) 196
USROPN 197
File Types and Processing Methods 198
Chapter 16. Definition Specification 199
Definition Specification Statement L. 200
Definition-Specification Continuation Line 200

Viii ILE RPG/400 Reference

Position 8 (Form Type) 200

Positions 7-21 (Name) 200
Position 22 (External Description) P 201
Position 23 (Type of Data Structure) 201
Positions 24-25 (Type of Definition) e 201
Positions 26-32 (From Position) 202
Positions 33-39 (To Position / Length) 202
Position 40 (Internal Data Type) 203
Positions 41-42 (Decimal Positions) 204
Position 43 (Reserved) 204
Positions 44-80 (Keywords) 204
Definition-Specification Keywords L 205
ALT(array name) 205
ASCEND 205
BASED(basing_pointer name) 206
CONST(constant) 206
CTDATA . . 206
DATFMT (format{separator}) 206
DESCEND e 207
DIM(numeric_constant) 207
DTAARA{(data_area_name)} 207
EXPORT 208
EXTFLD(field name) 208
EXTFMT(code) o o 208
EXTNAME(file_name{:format_name}) 209
FROMFILE(file_name) 209
IMPORT 209
INZ{(constant)} 210
LIKE(RPG name) 210
NOOPT . . . 211
OCCURS(numeric_constant) 212
OVERLAY(name{:pos}) o o 213
PACKEVEN e 214
PERRCD(numeric_constant) 214
PREFIX(prefix_string) 214
PROCPTR e 215
TIMFMT (format{separator}) 215
TOFILE(file_name) 215
Summary According to Definition Specification Type 216
Chapter 17. Input Specifications 219
Input Specification Statement oo 220
Program Described 220
Externally Described 220
Program Described Files 221
Position 6 (Form Type) 221
Record Identification Entrieso 221
Positions 7-16 (File Name) 221
Positions 16-18 (Logical Relationship) 221
Positions 17-18 (Sequence) 221
Alphabetic Entries 222
Numeric Entries 222
Position 19 (Number) 222
Position 20 (Option) 222

Contents IX

X

Positions 21-22 (Record Identifying Indicator, or **) 223

Indicators 223
Lookahead Fields 223
Positions 23-46 (Record Identification Codes) 224
Positions 23-27, 31-35, and 39-43 (Position) 224
Positions 28, 36, and 44 (Not) 225
Positions 29, 37, and 45 (Code Part) 225
Positions 30, 38, and 46 (Character) 226
AND Relationship 226

OR Relationship 226
Field Description Entries 226
Position 6 (Form Type) 226
Positions 7-30 (Reserved) 226
Positions 31-34 (Date/Time External Format) 227
Position 35 (Date/Time Separator) 227
Position 36 (Data Format) 227
Positions 37-46 (Field Location) 227
Positions 47-48 (Decimal Positions) 228
Positions 49-62 (Field Name) 228
Positions 63-64 (Control Level) 229
Positions 65-66 (Matching Fields) 229
Positions 67-68 (Field Record Relation) 230
Positions 69-74 (Field Indicators) 230
Externally Described Files, 231
Position 6 (Form Type) 231
Record Identification Entries, 231
Positions 7-16 (Record Name) 231
Positions 17-20 (Reserved) 231
Positions 21-22 (Record Identifying Indicator) 231
Positions 23-80 (Reserved) 232
Field Description Entries 232
Positions 7-20 (Reserved) 232
Positions 21-30 (External Field Name) 232
Positions 31-48 (Reserved) 232
Positions 49-62 (Field Name), 232
Positions 63-64 (Control Level) 232
Positions 65-66 (Matching Fields) 233
Positions 67-68 (Reserved) 233
Positions 69-74 (Field Indicators) 233
Positions 75-80 (Reserved) 233
Chapter 18. Calculation Specifications 235
Calculation Specification Statement 236
Calculation-Specification Extended Factor-2 Continuation Line 236
Position 6 (Form Type) 237
Positions 7-8 (Control Level) 237
Control Level Indicators 237

Last Record Indicator 237
Subroutine Identifier L 238
AND/OR Lines Identifier 238
Positions 9-11 (Indicators) 238
Positions 12-25 (Factor 1) 238
Positions 26-35 (Operation and Extender) 239
Operation Extender 239

ILE RPG/400 Reference

Positions 36-49 (Factor 2) 239

Positions 50-63 (Result Field) 240
Positions 64-68 (Field Length) 240
Positions 69-70 (Decimal Positions) 240
Positions 71-76 (Resulting Indicators) 240
Calculation Extended Factor 2 Specification Statement 241
Positions 7-8 (Control Level) 241
Positions 9-11 (Indicators) 241
Positions 12-25 (Factor 1) 241
Positions 26-35 (Operation and Extender) 241
Operation Extender 242
Positions 36-80 (Extended Factor2) 242
Chapter 19. Output Specifications 243
Output Specification Statement L 244
Program Described 244
Externally Described o 244
Program Described Files o 245
Position 6 (Form Type) 245
Record Identification and Control Entries 245
Positions 7-16 (File Name) 245
Positions 16-18 (Logical Relationship) 245
Position 17 (Type) 245
Positions 18-20 (Record Addition/Deletion) 246
Position 18 (Fetch Overflow/Release) 246
Fetch Overflow 246
Release 247
Positions 21-29 (Output Conditioning Indicators) 247
Positions 30-39 (EXCEPT Name) 248
Positions 40-51 (Space and Skip) L. 249
Positions 40-42 (Space Before) 249
Positions 43-45 (Space After) L. 249
Positions 46-48 (Skip Before) 250
Positions 49-51 (Skip After) 250
Field Description and Control Entries 250
Positions 21-29 (Output Indicators) 250
Positions 30-43 (Field Name) 250
Field Names, Blanks, Tables and Arrays 250
PAGE, PAGE1-PAGE7 251
*PLACE . . . 251
User Date Reserved Words 251

*IN, *INxx, *IN(XX) . . o 251
Position 44 (Edit Codes) 252
Position 45 (Blank After) 252
Positions 47-51 (End Position) 252
Position 52 (Data Format) 253
Positions 53-80 (Constant, Edit Word, Date/Time Format, Format Name) 254
Constants 254
EditWords 254
Date/Time Format 255
Record FormatName 255
Externally Described Files 255
Position 6 (Form Type) 255
Record Identification and Control Entries 255

Contents Xi

Positions 7-16 (Record Name) 255

Positions 16-18 (Logical Relationship) 255
Position 17 (Type) 256
Position 18 (Release), 256
Positions 18-20 (Record Addition) 256
Positions 21-29 (Output Indicators) 256
Positions 30-39 (EXCEPT Name) 256
Field Description and Control Entries 256
Positions 21-29 (Output Indicators) 256
Positions 30-43 (Field Name) 257
Position 45 (Blank After), 257
Built-in Functions, Expressions, and Operation Codes 259
Chapter 20. Built-in Functions 261
Built-in Functions Alphabetically 264
%ADDR (Get Address of Variable) 264
%ADDR Example 264
%ELEM (Get Number of Elements) 266
%PADDR (Get Procedure Address) 267
%PADDR Examples 267
BSIZE . 268
%SIZE Examples 268
%SUBST 270
%SUBST Used forits Value 270
%SUBST Used as the Result of an Assignment 270
%SUBST Example, 271
%TRIM 272
%TRIM Examples 272
%TRIML . .. 273
%TRIML Examples 273
%TRIMR .. . 274
%TRIMR Examples, 274
Chapter 21. Expressions 275
Expression Operators and Operands 275
Expression Rules 278
Precision Rules 279
Chapter 22. Operation Codes 281
Arithmetic Operations, 287
Array Operations 289
Bit Operations 289
Branching Operations 290
Call Operations 290
Compare Operations 291
Data-Area Operations 292
Date Operations 293
Declarative Operations, 294
Operations Using Expressions 294
File Operations 294
Indicator-Setting Operations 296
Information Operations 296

Xii ILE RPG/400 Reference

Initialization Operations 296

Message Operation 297
Move Operations 297
Moving Character, Graphic, and Numeric Data 298
Moving Date-Time Data 299
Example of Converting a Character Field to a Date Field 300
Move Zone Operations 301
String Operations 302
Structured Programming Operations 303
Subroutine Operations 305
Test Operations 306
Chapter 23. Operation Codes Detail 307
ACQ (AcQUIre) o 307
ADD (Add) 308
ADDDUR (Add Duration) 309
ANDXx (And) 311
BEGSR (Beginning of Subroutine) 312
BITOFF (SetBits Off) 313
BITON (SetBits On) 314
CABxx (Compare and Branch) 316
CALL (CallaProgram) 318
CALLB (Call a Bound Procedure) 321
CASxx (Conditionally Invoke Subroutine) 322
CAT (Concatenate Two Strings) 324
CHAIN (Random Retrieval fromaFile) 327
CHECK (Check Characters) 330
CHECKR (Check Reverse) 333
CLEAR (Clear) oo 335
CLOSE (Close Files) 339
COMMIT (Commit) 340
COMP (COMPAre) ot it e 341
DEFINE (Field Definition) 342
*LIKE DEFINE 342
*DTAARADEFINE 342
DELETE (Delete Record), 345
DIV (Divide) 346
DO (DO) . . ot 347
DOU (Do Until) 349
DOUxx (Do Until) 350
DOW (Do While) 352
DOWxx (Do While) 353
DSPLY (Display Function) o 355
DUMP (Program Dump) 358
ELSE (Els€) 359
ENDyy (End a Structured Group) 360
ENDSR (End of Subroutine) 361
EVAL (Evaluate expression) 362
EXCEPT (Calculation Time Qutput) 364
EXFMT (Write/Then Read Format) 366
EXSR (Invoke Subroutine)o 367
Coding Subroutines 368
EXTRCT (Extract Date/Time/Timestamp) 370
FEOD (Force Endof Data) 371

Contents Xili

Xiv

ILE RPG/400 Reference

FORCE (Force a Certain File to Be Read Next Cycle) 372

GOTO (GO TO) . . . e, 373
IF () 374
IExx (If) .. 375
IN (Retrieve a Data Area), 377
ITER (terate) 379
KFLD (Define Partsof aKey) 381
KLIST (Define a Composite Key) 382
LEAVE (Leave a Do Group) 384
LOOKUP (Look Up a Table or Array Element) 385
MHHZO (Move High to High Zone) 388
MHLZO (Move Highto Low Zone) 389
MLHZO (Move Low to High Zone) 390
MLLZO (Move Lowto Low Zone) 391
MOVE (Move) 392
MOVEA (Move Array) 399

Character and graphic MOVEA Operations 399

Numeric MOVEA Operations 399

General MOVEA Operations 400
MOVEL (Move Left) 406
MULT (Multiply) 411
MVR (Move Remainder) 412
NEXT (Next) 413
OCCUR (Set/Get Occurrence of a Data Structure) 414
OPEN (Open File for Processing) 418
ORxx (Or) . . 420
OTHER (Otherwise Select) 421
OUT (WriteaData Area) 423
PARM (Identify Parameters) 424
PLIST (Identify a Parameter List) 426
POST (Post) 428
READ (Reada Record) 430
READC (Read Next Changed Record) 432
READE (Read Equal Key) 434
READP (Read Prior Record) 436
READPE (Read Prior Equal) 438
REL (Release) 440
RESET (Reset) 441
RETURN (Returnto Caller) 444
ROLBK (Roll Back) 445
SCAN (Scan String) 446
SELECT (Begin a Select Group) 449
SETGT (Set Greater Than) 451
SETLL (Set Lower Limit) 455
SETOFF (Set Indicator Off) 458
SETON (Set Indicator On) 459
SHTDN (Shut Down) 460
SORTA (Sortan Array) 461
SQRT (Square Root), 463
SUB (Subtract) 464
SUBDUR (Subtract Duration) 465
SUBST (Substring), 468
TAG (Tag) 471
TEST (Test Date/Time/Timestamp) 472

TESTB (TESEBI) . . o oo oo e e e 474

TESTN (Test Numeric) 476
TESTZ (TestZone) o i e 478
TIME (Timeof Day) 479
UNLOCK (Unlock a Data Area or Release a Record) 481
Unlocking dataareas 481
Releasingrecord locks L 481
UPDATE (Modify Existing Record) 483
WHEN (When True Then Select) 485
WHENxx (When True Then Select) 486
WRITE (Create New Records) 489
XFOOT (Summing the Elements ofan Array) 491
XLATE (Translate) 492
Z-ADD (Zeroand Add) 494
Z-SUB (Zero and Subtract) 495
Appendixes 497
Appendix A. RPG IV Restrictions 499
Appendix B. EBCDIC Collating Sequence 501
EBCDIC Collating Sequence 501
Bibliography 505
Index 507

Contents XV

XVi ILE RPG/400 Reference

Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s program or other product may be used. Any func-
tionally equivalent product, program or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Connecticut, USA
06904-2501.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information

This publication is intended to help you create programs using RPG [V source.
This publication documents general-use programming interfaces and associated ref-
erence information provided by the ILE RPG/400 compiler.

General-use programming interfaces allow you to write programs that request or
receive services of the ILE RPG/400 compiler.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*), in this publication, are trademarks
of the IBM Corporation in the United States or other countries:

Application System/400 AS/400

IBM ILE

Integrated Language Environment Operating System/400
0S/2 0S/400

RPG IV RPG/400

400

© Copyright IBM Corp. 1994 Xvii

Xviili ILE RPG/400 Reference

About This Reference

This guide provides information about the RPG IV* programming language in the
Integrated Language Environment*. (RPG IV* language is an implementation of the
ILE RPG/400 language on the AS/400* system with the Operating System/400*
(OS/400*) operating system.)

This reference covers:

¢ The RPG IV character set
Symbolic names

Special words

The RPG IV cycle

Error handling

Data types

The RPG IV specifications
Built-in functions
Expressions

Operation codes

This reference may refer to products that are announced but are not yet available.

You may need to refer to other IBM* guides for more specific information about a
particular topic. The Publications Ordering, SC41-3000, provides information on all
of the guides in the AS/400 library. For a list of related publications, see the bibli-
ography on page 505.

Who Should Use This Reference

This reference is for programmers who are familiar with the RPG IV programming
language.

This reference provides a detailed description of the RPG IV language. It does not
provide information on how to use the RPG IV compiler or converting RPG Il pro-
grams to RPG IV. For information on those subjects, see the ILE RPG/400
Programmer’s Guide SC09-1525.

Before using this reference, you should

¢ Know how to use applicable AS/400 menus and displays or Control Language
(CL) commands.

¢ Have a firm understanding of ILE as described in detail in the ILE Concepts,
SC41-3606.

© Copyright IBM Corp. 1994 Xix

XX ILE RPG/400 Reference

© Copyright IBM Corp. 1994

This section describes some of the basics of RPG IV:

Symbolic names

Compiler directives

The RPG IV program cycle
Indicators

Error Handling

General file considerations

RPG IV Concepts

2 ILE RPG/400 Reference

Symbolic Names

Chapter 1. Symbolic Names and Reserved Words

The valid character set for the RPG IV language consists of:

e Theletters ABCDEFGHIJKLMNOPQRSTUVWXYZ

* RPG IV accepts lowercase letters in symbolic names but translates them to
uppercase during compilation

e Thenumbers0123456789

e Thecharacters + -*,.' & /$#: @ _><=()%

¢ The blank character

Symbolic Names

A symbolic name is a name that uniquely identifies specific data in a program. lIts
purpose is to allow you to access that data. In the RPG IV language, symbolic
names are used for the following:

¢ Arrays (on page 3)

¢ Data structures (on page 4)

» Exception output records (on page 4)
» Fields (on page 4)

» Key field lists (on page 4)
Labels (on page 4)

* Named constants (on page 120)
e Parameter lists (on page 4)

* Record names (on page 4)

¢ Subroutines (on page 5)

¢ Tables (on page 5).

The following rules apply to all symbolic names except for deviations noted in the
description of each symbolic name:

¢ The first character of the name must be alphabetic. This includes the charac-
ters $, #, and @.

» The remaining characters must be alphabetic or numeric. This includes the
underscore ().

* The name must be left-adjusted in the entry on the specification form except in
fields which allow the name to float (definition specification, keyword fields, and
the extended factor 2 field).

¢ A symbolic name cannot be an RPG IV reserved word.

e A symbolic name can be 1 to 10 characters.

* A symbolic name must be unique.

Array Names
The following additional rule applies to array names:

e An array name cannot begin with the letters TAB.

© Copyright IBM Corp. 1994 3

Symbolic Names

Data Structure Names

A data structure is an area in storage and is considered to be a character field.
The following additional rule applies to data structure names:

* A name can be defined as a data structure only once.

EXCEPT Names

An EXCEPT name is a symbolic name assigned to an exception output record.
The following additional rule applies to EXCEPT names:

¢ The same EXCEPT name can be assigned to more than one output record.

Field Names
The following additional rules apply to field names:

» A field name can be defined more than once if each definition using that name
has the same data type, the same length, and the same number of decimal
positions. All definitions using the same name refer to a single field (that is, the
same area in storage). However, it can be defined only once on the definition
specification.

* A field can be defined as a data structure subfield only once.

¢ A subfield name cannot be specified as the result field on an *ENTRY PLIST
parameter.

KLIST Names

A KLIST name is a symbolic name assigned to a list of key fields.

Labels

A label is a symbolic name that identifies a specific location in a program (for
example, the name assigned to a TAG or ENDSR operation).

Named Constants
A named constant is a symbolic name assigned to a constant.

PLIST Names

A PLIST name is a symbolic name assigned to a list of parameters.

Record Names

A record name is a symbolic name assigned to a record format in an externally
described file. The following additional rules apply to record names in an RPG IV
program:

¢ A record name can exist in only one file in the program.

Note: See “RENAME(Ext_format:Int_format)” on page 195 for information on how
to overcome this limitation.

4 |ILE RPG/400 Reference

RPG IV Words with Special Functions

Subroutine Names
The name is defined in factor 1 of the BEGSR (begin subroutine) operation.

Table Names
The following additional rules apply to table names:

¢ A table name can contain from 3 to 10 characters.
« A table name must begin with the letters TAB.

RPG IV Words with Special Functions/Reserved Words
The following RPG IV reserved words have special functions within a program:

« The following reserved words allow you to access the job date, or a portion of
it, to be used in the program.

UDATE
*DATE
UMONTH
*MONTH
UYEAR
*YEAR
UDAY
*DAY

« The following reserved words can be used for numbering the pages of a report,
for record sequence numbering, or to sequentially number output fields.

PAGE
PAGE1-PAGE?

« Figurative constants are implied literals that allow specifications without refer-
ring to length.

*BLANK/*BLANKS
*ZERO/*ZEROS
*HIVAL

*LOVAL

*NULL

*ON

*OFF

*ALLX'x1..!
*ALLG'oK1K2i'
*ALLX..

 The following reserved words allow indicators to be referred to as data.

*IN
*INxx

» Special words used with date and time

*DMY
*EUR
*HMS
*SO
*JIS
*JUL

Chapter 1. Symbolic Names and Reserved Words 5

User Date Special Words

*MDY
*YMD
*USA

* Special words used with translation.

*ALTSEQ
*EQUATE
*FILE

*FTRANS

* *PLACE allows repetitive placement of fields in an output record. (See
“*PLACE” on page 251 for more information.)

* *ALL allows all fields that are defined for an externally described file to be
written on output. (See “Rules for Figurative Constants” for more information
on *ALL)

* Special words used with Built-in Functions

*ALL
*NULL

» Special words used with parameter passing
*OMIT

User Date Special Words

The user date special words (UDATE, *DATE, UMONTH, *MONTH, UDAY, *DAY,
UYEAR, *YEAR) allow the programmer to supply a date for the program at run
time. The user date special words access the job date that is specified in the job
description. The user dates can be written out at output time; UDATE and *DATE
can be written out using the Y edit code in the format specified by the control spec-
ification. (For a description of the job date, see the &wrkmgmtl..)

Rules for User Date
Remember the following rules when using the user date:

» UDATE, when specified in positions 30 through 43 of the output specifications,
prints a 6-character numeric date field. *DATE, when similarly specified, prints
an 8-character (4-digit year portion) numeric date field. These special words
can be used in three different date formats:

Month/day/year
Year/month/day
Day/month/year

Use the DATEDIT keyword on the control specification to specify the the editing
to be done. If this keywords are not specified, the default is *MDY.

* For an interactive program, the user date special words are set when the job
starts running. For a batch program, they are set when the job is sent to the
job queue. In neither case are they updated when the program runs over mid-
night or when the job date changes. Use the TIME operation code to obtain
the time and date while the program is running.

* UMONTH, *MONTH, UDAY, *DAY, and UYEAR when specified in positions 30
through 43 of the output specifications, print a 2-position numeric date field.
*YEAR can be used to print a 4-position numeric date field. Use UMONTH or

6 ILE RPG/400 Reference

PAGE, PAGE1-PAGE?7

*MONTH to print the month only, UDAY or *DAY to print the day only, and
UYEAR or *YEAR to print the year only.

UDATE and *DATE can be edited when they are written if the Y edit code is
specified in position 44 of the output specifications. The

“DATEDIT (fmt{separator})” keyword on the control specification determines the
format and the separator character to be inserted; for example, 12/31/88,
31.12.88., 12/31/1988.

UMONTH, *MONTH, UDAY, *DAY, UYEAR and *YEAR cannot be edited by
the Y edit code in position 44 of the output specifications.

The user date fields cannot be modified. This means they cannot be used:

— In the result field of calculations

As factor 1 of PARM operations

As the factor 2 index of LOOKUP operations
With blank after in output specifications

As input fields

The user date special words can be used in factor 1 or factor 2 of the calcu-
lation specifications for operation codes that use numeric fields.

User date fields are not data data type fields but are numeric fields.

PAGE, PAGE1-PAGE7

PAGE is used to number the pages of a report, to serially number the output
records in a file, or to sequentially number output fields. It does not cause a page
eject.

The eight possible PAGE fields (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGES,
PAGES6, and PAGE7) may be needed for numbering different types of output pages
or for numbering pages for different printer files.

PAGE fields can be specified in positions 30 through 43 of the output specifications
or in the input or calculation specifications.

Rules for PAGE, PAGE1-PAGE7

Remember the following rules when using the PAGE fields:

When a PAGE field is specified in the output specifications, without being
defined elsewhere, it is assumed to be a four-digit, numeric field with zero
decimal positions.

Page numbering, unless otherwise specified, starts with 0001; and 1 is auto-
matically added for each new page.

To start at a page number other than 1, set the value of the PAGE field to one
less than the starting page number. For example, if numbering starts with 24,
enter a 23 in the PAGE field. The PAGE field can be of any length but must
have zero decimal positions (see Figure 1 on page 8).

Page numbering can be restarted at any point in a job. The following methods
can be used to reset the PAGE field:

— Specify blank-after (position 45 of the output specifications).
— Specify the PAGE field as the result field of an operation in the calculation
specifications.

Chapter 1. Symbolic Names and Reserved Words 7

PAGE, PAGE1-PAGE?7

— Specify an output indicator in the output field specifications (see Figure 2).
When the output indicator is on, the PAGE field will be reset to 1. Output
indicators cannot be used to control the printing of a PAGE field, because a
PAGE field is always written.

— Specify the PAGE field as an input field as shown in Figure 1.

» Leading zeros are automatically suppressed (Z edit code is assumed) when a
PAGE field is printed unless an edit code, edit word, or data format (P/B/L/R in
position 52) has been specified. Editing and the data format override the sup-
pression of leading zeros. When the PAGE field is defined in input and calcu-
lation specifications, it is treated as a field name in the output specifications
and zero suppression is not automatic.

NP T /. . T Y. SUNPI AR RPN AR | DRPPE DN AN
IFilename++SqNORiPOS1+NCCPOS2+NCCPOS3+NCC. e v v e e i et eeeenenacnennnnnnan
P Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
TINPUT PG 50 1 CP

I 2 5 OPAGE

Figure 1. Page Record Description

OFilename++DF. .NOINO2NO3Excnam++++B++A++Sb+Sa+

...........................

NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

8

0* When indicator 15 is on, the PAGE field is set to zero and 1 is
0* added before the field is printed. When indicator 15 is off, 1
0* 1is added to the contents of the PAGE field before it is printed.
OPRINT H L1 01

0 15 PAGE 1 75

Figure 2. Resetting the PAGE Fields to Zero

ILE RPG/400 Reference

Compiler Directives

Chapter 2. Compiler Directives

The compiler directive statements /TITLE, /EJECT, /SPACE, and /COPY allow you
to specify heading information for the compiler listing, to control the spacing of the
compiler listing, and to insert records from other file members during a compile.
The compiler directive statements must precede any compile-time arrays or tables
records, translation records, and alternate collating sequence records (that is, **

records).

[TITLE (Positions 7-12)

Use the compiler directive /TITLE to specify heading information (such as security
classification or titles) that is to appear at the top of each page of the compiler
listing. The following entries are used for /TITLE:

Positions Entry

7-12 [TITLE
13 Blank
14-100 Title information

A program can contain more than one /TITLE statement. Each /TITLE statement
provides heading information for the compiler listing until another /TITLE statement
is encountered. A /TITLE statement must be the first RPG IV specification
encountered to print information on the first page of the compiler listing. The
information specified by the /TITLE statement is printed in addition to compiler
heading information.

The /TITLE statement causes a skip to the next page before the title is printed. The
[TITLE statement is not printed on the compiler listing.

/EJECT (Positions 7-12)

Positions Entry

7-12 /EJECT
13-49 Blank
50-100 Comments

Enter /EJECT in positions 7 through 12 to indicate that subsequent specifications
are to begin on a new page of the compiler listing. Positions 13 through 49 of the
/EJECT statement must be blank. The remaining positions may be used for com-
ments. If the spool file is already at the top of a new page, /EJECT will not
advance to a new page. /EJECT is not printed on the compiler listing.

/SPACE (Positions 7-12)

Use the compiler directive /SPACE to control line spacing within the source section
of the compiler listing. The following entries are used for /SPACE:

Positions Entry
7-12 /SPACE
13 Blank

© Copyright IBM Corp. 1994 9

Compiler Directives

14-16 A positive integer value from 1 through 112 that defines the number
of lines to space on the compiler listing. The number must be left-
adjusted.

17-49 Blank

50-100 Comments

If the number specified in positions 14 through 16 is greater 112, 112 will be used

as the /SPACE value. If the number specified in positions 14 through 16 is greater
than the number of lines remaining on the current page, subsequent specifications
begin at the top of the next page.

/SPACE is not printed on the compiler listing, but is replaced by the specified line
spacing. The line spacing caused by /SPACE is in addition to the two lines that are
skipped between specification types.

/COPY (Positions 7-11)

10

The /COPY compiler directive causes records from other files to be inserted, at the
point where the /COPY occurs, with the file being compiled. The inserted files may
contain any valid specification except /COPY.

The /COPY statement is entered in the following way:

Positions Entry

7-11 /COPY

12 Blank

13-49 Identifies the location of the member to be copied (merged). The
format is:

libraryname/filename,membername (RPG IV AS/400 environment)

¢ A member name must be specified.

* [f a file name is not specified, QRPGLESRC is assumed.

* If a library is not specified, the library list is searched for the file.
All occurrences of the specified source file in the library list are
searched for the member until it is located or the search is com-
plete.

* |f a library is specified, a file name must also be specified.

50-100 Comments

Figure 3 shows some examples of the /COPY directive statement.
C/COPY MBR1

I/COPY SRCFIL,MBR2 HA

0/COPY SRCLIB/SRCFIL,MBR3

0/COPY "SRCLIB!"/"SRC>3","MBR-3"
Figure 3. Examples of the /COPY Compiler Directive Statement

Copies from member MBR1 in source file QRPGLESRC. The current library
list is used to search for file QRPGLESRC.

H Copies from member MBR2 in file SRCFIL. The current library list is used to
search for file SRCFIL. Note that the comma is used to separate the file
name from the member name.

ILE RPG/400 Reference

Compiler Directives

Copies from member MBR3 in file SRCFIL in library SRCLIB.
B Copies from member "MBR-3" in file "SRC>3" in library "SRCLIB!"

Results of the /COPY during Compile

During compilation, the specified file members are merged into the program at the
point where the /COPY statement occurs. All /COPY members will appear in the
COPY member table.

Chapter 2. Compiler Directives 11

Compiler Directives

12 ILE RPG/400 Reference

Program Cycle

Chapter 3. Program Cycle

The RPG IV compiler supplies part of the logic for an RPG IV program. The logic
the compiler supplies is called the program cycle or logic cycle. The program cycle
is a series of ordered steps that the program goes through for each record read.

Y gn RPG IV specifications in your source program
need not explicitly specify when records should be read or written. The RPG IV
compiler can supply the logical order for these operations when your source
program is compiled. Depending on the specifications you code, your program may
or may not use each step in the cycle.

Primary (identified by a P in position 18 of the file description specifications) and
secondary (identified by an S in position 18 of the file description specifications)
files indicate input is controlled by the program cycle. A full procedural file (identi-
fied by an F in position 18 of the file description specifications) indicates that input
is controlled by program-specified calculation operations (for example, READ and
CHAIN).

A program can consist of:

¢ One primary file and, optionally, one or more secondary files

¢ Only full procedural files

* A combination of one primary file, optional secondary files, and one or more full
procedural files in which some of the input is controlled by the cycle, and other
input is controlled by the program.

* No files (for example, input can come from a parameter list or a data area data
structure).

General RPG IV Program Cycle

Figure 4 on page 14 shows the specific steps in the general flow of the RPG IV
program cycle. A program cycle begins with step 1 and continues through step 7,
then begins again with step 1.

The first and last time a program goes through the RPG IV cycle differ somewhat
from the normal cycle. Before the first record is read the first time through the
cycle, the program resolves any parameters passed to it, writes the records condi-
tioned by the 1P (first page) indicator, does file and data initialization, and proc-
esses any heading or detail output operations having no conditioning indicators or
all negative conditioning indicators. For example, heading lines printed before the
first record is read might consist of constant or page heading information or fields
for reserved words, such as PAGE and *DATE. In addition, the program bypasses
total calculations and total output steps on the first cycle.

During the last time a program goes through the cycle, when no more records are

available, the LR (last record) indicator and L1 through L9 (control level) indicators
are set on, and file and data area cleanup is done.

© Copyright IBM Corp. 1994 13

Program Cycle

(Start)

Perform
heading
and
detail
lines

Get input
record

Perform
total
calculations

Perform
total
output

5 LR Yes End of
on program

No
Move fields
Perform
detalil
calculations

Figure 4. RPG IV Program Logic Cycle

14 ILE RPG/400 Reference

Program Cycle

All heading and detail lines (H or D in position 17 of the output specifica-
tions) are processed.

B The next input record is read and the record identifying and control level indi-
cators are set on.

Total calculations are processed. They are conditioned by an L1 through L9
or LR indicator, or an LO entry.

[All total output lines are processed. (identified by a T in position 17 of the
output specifications).

It is determined if the LR indicator is on. If it is on, the program is ended.

@ The fields of the selected input records are moved from the record to a proc-
essing area. Field indicators are set on.

All detail calculations are processed (those not conditioned by control level

indicators in positions 7 and 8 of the calculation specifications) on the data
from the record read at the beginning of the cycle.

Detailed RPG IV Program Cycle

In “General RPG IV Program Cycle” on page 13, the basic RPG IV Logic Cycle was
introduced. The following figures provide a detailed explanation of the RPG IV
Logic Cycle.

Chapter 3. Program Cycle 15

Program Cycle

(1]

® Setoff RTindicator
® Parametersresolved

First
time program
called

No

Move resultfield
tofactor 1 for
*ENTRY PLIST

*INIT
Perform program initialization:
@ Runprograminitialization
@ Perform data structure and
subfield initialization
@ Retrieve external indicators
(U1 through U8) and user
datefields
@ Openfiles
@ Loaddata areadata
structures, arrays, and tables
@ Moveresultfield to factor 1
for*ENTRY PLIST
@ Runinitialization subroutine,
*INZSR, if specified
@ Store datastructures and
variables for RESET operation

*DETL
@ Perform heading and detail
output
@ Perform fetch overflow lines
@ Setofffirstpage
indicators (1P)

*GETIN

Any
H1throughH9
indicators
on

Sr?taﬁﬁ Issue message
indicator torequester

Response
cancel

Cancel
with dump

Issue dump

@

Set of record identifying and
L1 through L9 indicators

Primary file

@ Onfirstcycle, retrieve first
record from primary file and
and from each secondary
filein program

@ Onothercycles, retrieve
input record from last file
processed, if required

No
End offile
Yes m
—~tt

Seton
L1throughL9

Move factor2to
resultfield for
*ENTRY PLIST

Returnto caller

Determine record
type and sequence

Undefined
record type or sequ-
ence error

FORCE
issued

Match fields
specified

Figure 5 (Part 1 of 2). Detailed RPG IV Object Program Cycle

16 ILE RPG/400 Reference

RPG exception/error
handling routine

Initialize to process
the forced file

=RPGroutine

(for detailedinformation
seethe descriptionsthat
follow this picture).

Should
LRindicator
beseton

Seton LRindicator
andalicontrol level
indicators i
(L1through L9)

Seton record identifying
indicator for record selected

No

Control break

28

Yes

@ Setonappropriate
control levelindicators
(L1through L9)

® Save controlfields

 —

Should
totalsbe
executed

No

*TOTC
Performtotal calculations

S

*TOTL
Perform total output

Note:

Yes

RETURN

*OFL '
_O\égrﬂ?w , Overflow |
indicator {_ routne _:

SetMRindicator
on or off

® Make data available
from lastrecord read

® Setfieldindicators

on or off

Look-ahead

—_
Look-ahead |
fields specified I

routine
— ..._.‘__ -

*DETC
Perform detail calculations

g——
|

Y
deicators s
LR Yes
on?
No

Ed *term

® Writelocked data
areastructures

® Resetexternal
indicators

*CANCL
® Closefiles
® Unlockother Data .
areas locked by

the program

Halt
Indicators

Move factor

- —-— = RPGroutine (for detailed

information, see the descriptions

thatfollow this figure).

- 2toparms

Setreturn code. If -t
abnormal termination,
issue escape message

Return
tocaller

Figure 5 (Part 2 of 2). Detailed RPG IV Object Program Cycle

Program Cycle

Chapter 3. Program Cycle 17

Program Cycle

Detailed RPG IV Object Program Cycle

Figure 5 on page 16 shows the specific steps in the detailed flow of the RPG IV
program cycle. The item numbers in the following description refer to the numbers
in the figure. Routines are flowcharted in Figure 8 on page 26 and in Figure 6 on
page 22.

18

(2

ON B

1

BEEEBEBE

14

ILE RPG/400 Reference

The RT indicator is set off. If *ENTRY PLIST is specified the parameters are

resolved.

RPG IV checks for the first invocation of the program. If it is the first invoca-

tion, program initialization continues. If not, it moves the result field to factor

1 in the PARMS statement in *ENTRY PLIST and branches to step 5.

The program is initialized at *INIT in the cycle. This process includes: per-

forming data structure and subfield initialization, setting user date fields;

opening files; loading all data area data structures, arrays and tables; moving

the result field to factor 1 in the PARMS statement in *ENTRY PLIST;

running the initialization subroutine *INZSR; and storing the structures and

variables for the RESET operation. Files are opened in reverse order of

their specification on the File Description Specifications.

Heading and detail lines (identified by an H or D in position 17 of the output

specifications) are written before the first record is read. Heading and detail

lines are always processed at the same time. If conditioning indicators are

specified, the proper indicator setting must be satisfied. If fetch overflow

logic is specified and the overflow indicator is on, the appropriate overflow

lines are written. File translation, if specified, is done for heading and detail

lines and overflow output. This step is the return point in the program if

factor 2 of an ENDSR operation contains the value *DETL.

The halt indicators (H1 through H9) are tested. If all the halt indicators are

off, the program branches to step 8. Halt indicators can be set on anytime

during the program. This step is the return point in the program if factor 2 of

an ENDSR operation contains the value *GETIN.

a. If any halt indicators are on, a message is issued to the user.

b. If the response is to continue, the halt indicator is set off, and the
program returns to step 5. If the response is to cancel, the program
goes to step 6.

If the response is to cancel with a dump, the program goes to step 7; other-

wise, the program branches to step 36.

The program issues a dump and branches to step 36 (abnormal ending).

All record identifying, 1P (first page), and control level (L1 through L9) indica-

tors are set off. All overflow indicators (OA through OG, OV) are set off

unless they have been set on during preceding detail calculations or detail

output. Any other indicators that are on remain on.

If the LR (last record) indicator is on, the program continues with step 10. If

it is not on, the program branches to step 11.

The appropriate control level (L1 through L9) indicators are set on and the

program branches to step 29.

If the RT indicator is on, the program continues with step 12; otherwise, the

program branches to step 14.

Factor 2 is moved to the result field for the parameters of the *ENTRY

PLIST.

If the RT indicator is on (return code set to 0), the program returns to the

caller.

If a primary file is present in the program, the program continues with step

15; otherwise, the program branches to step 29.

[
(3,

[-
[e<] ~N C

=y
o

N
w

N N
~N ol

Program Cycle

During the first program cycle, the first record from the primary file and from
each secondary file in the program is read. File translation is done on the
input records. In other program cycles, a record is read from the last file
processed. [f this file is processed by a record address file, the data in the
record address file defines the record to be retrieved. If lookahead fields are
specified in the last record processed, the record may already be in storage;
therefore, no read may be done at this time.

If end of file has occurred on the file just read, the program branches to step
20. Otherwise, the program continues with step 17.

If a record has been read from the file, the record type and record sequence
(positions 17 through 20 of the input specifications) are determined.

It is determined whether the record type is defined in the program, and if the
record sequence is correct. If the record type is undefined or the record
sequence is incorrect, the program continues with step 19; otherwise, the
program branches to step 20.

The RPG IV exception/error handling routine receives control.

It is determined whether a FORCE operation was processed on the previous
cycle. If a FORCE operation was processed, the program selects that file for
processing (step 21) and branches around the processing for match fields
(steps 22 and 23). The branch is processed because all records processed
with a FORCE operation are processed with the matching record (MR) indi-
cator off.

If FORCE was issued on the previous cycle, the program selects the forced
file for processing after saving any match fields from the file just read. If the
file forced is at end of file, normal primary/secondary multifile logic selects
the next record for processing and the program branches to step 24.

If match fields are specified, the program continues with step 23; otherwise,
the program branches to step 24.

The match fields routine receives control. (For detailed information on the
match fields routine, see “Match Fields Routine” on page 22.)

The LR (last record) indicator is set on when all records are processed from
the files that have an E specified in position 19 of the file description specifi-
cations and all matching secondary records have been processed. If the LR
indicator is not set on, processing continues with step 26.

The LR (last record) indicator is set on and all control level (L1 through L9)
indicators, and processing continues with step 29.

The record identifying indicator is set on for the record selected for proc-
essing.

It is determined whether the record selected for processing caused a control
break. A control break occurs when the value in the control fields of the
record being processed differs from the value of the control fields of the last
record processed. If a control break has not occurred, the program
branches to step 29.

When a control break occurs, the appropriate control level indicator (L1
through L9) is set on. All lower level control indicators are set on. The
program saves the contents of the control fields for the next comparison.

It is determined whether the total-time calculations and total-time output
should be done. Totals are always processed when the LR indicator is on.
If no control level is specified on the input specifications, totals are bypassed
on the first cycle and after the first cycle, totals are processed on every
cycle. If control levels are specified on the input specifications, totals are
bypassed until after the first record containing control fields has been proc-
essed.

Chapter 3. Program Cycle 19

Program Cycle

20

41

(0]

jg Hlw w w w w
o = (=] -] (+-] ~N (=) (3,1
5@

«Q

B
w

4

E B B EH

47

ILE RPG/400 Reference

All total calculations conditioned by a control level entry (positions 7 and 8 of
the calculation specifications). are processed. This step is the return point
in the program if factor 2 of an ENDSR operation contains the value *TOTC.
All total output is processed. If fetch overflow logic is specified and the over-
flow indicator (OA through OG, OV) associated with the file is on, the over-
flow lines are written. File translation, if specified, is done for all total output
and overflow lines. This step is the return point in the program if factor 2 of
an ENDSR operation contains the value *TOTL.

If LR is on, the program continues with step 33; otherwise, the program
branches to step 41.

The halt indicators (H1 through H9) are tested. If any halt indicators are on,
the program branches to step 36 (abnormal ending). If the halt indicators
are off, the program continues with step 34. If the RETURN operation code
is used in calculations, the program branches to step 33 after processing of
that operation.

If LR is on, the program continues with step 35. If it is not on, the program
branches to step 38.

RPG IV program writes all arrays or tables for which the TOFILE keyword
has been specified on the definition specification and writes all locked data
area data structures. Output arrays and tables are translated, if necessary.
All open files are closed. The RPG IV program also unlocks all data areas
that have been locked but not unlocked by the program. If factor 2 of an
ENDSR operation contains the value *CANCL, this step is the return point.
The halt indicators (H1 through H9) are tested. If any halt indicators are on,
the program branches to step 39 (abnormal ending). If the halt indicators
are off, the program continues with step 38.

The factor 2 fields are moved to the result fields on the PARMs of the
*ENTRY PLIST.

The return code is set. 1 =LR on, 2 = error, 3 = halt.

Control is returned to the caller.

Steps 32 through 40 constitute the normal ending routine. For an abnormal
, steps 34 through 35 are bypassed.

It is determined whether any overflow indicators (OA through OG QV) are
on. If an overflow indicator is on, the program continues with step 42; other-
wise, the program branches to step 43.

The overflow routine receives control. (For detailed information on the over-
flow routine, see “Overflow Routine” on page 23.) This step is the return
point in the program if factor 2 of an ENDSR operation contains the value
*OFL.

The MR indicator is set on and remains on for the complete cycle that proc-
esses the matching record if this is a multifile program and if the record to be
processed is a matching record. Otherwise, the MR indicator is set off.

Data from the last record read is made available for processing. Field indi-
cators are set on, if specified.

If lookahead fields are specified, the program continues with step 46; other-
wise, the program branches to step 47.

The lookahead routine receives control. (For detailed information on the
lookahead routine, see “Lookahead Routine” on page 24.)

Detail calculations are processed. This step is the return point in the
program if factor 2 of an ENDSR operation contains the value *DETC. The
program branches to step 4.

Program Cycle

Initialization Subroutine
Refer to Figure 5 on page 16 to see a detailed explanation of the RPG IV initializa-
tion subroutine.

A specific subroutine that is to be run at program initialization time can be defined
by specifying *INZSR in factor 1 of the subroutine's BEGSR operation. Only one
subroutine can be defined as an initialization subroutine. It is called at the end of
the program initialization step of the program cycle (that is, after data structures
and subfields are initialized, external indicators and user data fields are retrieved,
files are opened, data area data structures, arrays, and tables are loaded, and
PARM result fields moved to factor 1 for *ENTRY PLIST). *INZSR may not be
specified as a file/program error/exception subroutine.

If a program ends with LR off, the initialization subroutine does not automatically
run during the next invocation of that program because the subroutine is part of the
initialization step of the program.

The initialization subroutine is like any other subroutine in the program, other than
being called at program initialization time. It may be called using the EXSR or
CASxx operations, and it may call other subroutines or other programs. Any opera-
tion that is valid in a subroutine is valid in the initialization subroutine, with the
exception of the RESET operation. This is because the value used to reset a vari-
able is not defined until after the initialization subroutine is run.

Any changes made to a variable during the initialization subroutine affect the value
that the variable is set to on a subsequent RESET operation. Default values can
be defined for fieids in record formats by, for exampie, setting them in the initializa-
tion subroutine and then using RESET against the record format whenever the
default values are to be used. The initialization subroutine can also retrieve infor-
mation such as the current time for 1P output.

Chapter 3. Program Cycle 21

Program Cycle

Match fields
routine

Multifile
processing

Determine the
file to be
processed

Match fields
$6quence error

Move the match
fields to

the match field
hold area

(Return)

Yes | RPG exception/ !
y error handling
| routine |

] (Look-ahead)
Overflow routine routine

Line

Retrieve next
put out Yes
with previous record for
fetch this file
Ne
H ' 2]
Perform Extract the
overflow look-ahead
output fields
———————————

Figure 6. Detail Flow of RPG IV Match Fields, Overflow, and Lookahead Routines

Match Fields Routine
Figure 6 shows the specific steps in the RPG IV match fields routine. The item
numbers in the following descriptions refer to the numbers in the figure.

If multifile processing is being used, processing continues with step 2; other-
wise, the program branches to step 3.

The value of the match fields in the hold area is tested to determine which
file is to be processed next.

The RPG IV program extracts the match fields from the match files and proc-
esses sequence checking. If the match fields are in sequence, the program
branches to step 5.

If the match fields are not in sequence, the RPG IV exception/error handling
routine receives control.

The match fields are moved to the hold area for that file. A hold area is
provided for each file that has match fields. The next record is selected for
processing based on the value in the match fields.

B N

22 ILE RPG/400 Reference

Program Cycle

Overflow Routine
Figure 6 on page 22 shows the specific steps in the RPG IV overflow routine. The
item numbers in the following descriptions refer to the numbers in the figure.

The RPG IV program determines whether the overflow lines were written pre-
viously using the fetch overflow logic (step 30 in Figure 5 on page 16). If
the overflow lines were written previously, the program branches to the spec-
ified return point; otherwise, processing continues with step 2.

B Al output lines conditioned with an overflow indicator are tested and written
to the conditioned overflow lines.

The fetch overflow routine allows you to alter the basic RPG IV overflow logic to
prevent printing over the perforation and to let you use as much of the page as
possible. During the regular program cycle, the RPG IV program checks only once,
immediately after total output, to see if the overflow indicator is on. When the fetch
overflow function is specified, the RPG IV program checks overflow on each line for
which fetch overflow is specified.

Specify fetch overflow with an F in position 18 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to determine
whether the line is to be written. If the line is to be written and an F is specified in
position 18, the RPG IV program tests to determine whether the overflow indicator is
on. If the overflow indicator is on, the overflow routine is fetched and the following
operations occur:

¢ Only the overflow lines for the file with the fetch specified are checked for
output.

¢ All total lines conditioned by the overflow indicator are written.

¢ Forms advance to a new page when a skip to a line number less than the line
number the printer is currently on is specified in a line conditioned by an over-
flow indicator.

¢ Heading, detail, and exception lines conditioned by the overflow indicator are
written.

¢ The line that fetched the overflow routine is written.

e Any detail and total lines left to be written for that program cycle are written.

Position 18 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an over-
flow indicator is specified in positions 21 through 29 of the same specification line.
If this occurs, the overflow routine is not fetched.

Use the fetch overflow routine when there is not enough space left on the page to
print the remaining detail, total, exception, and heading lines conditioned by the
overflow indicator. To determine when to fetch the overflow routine, study all pos-
sible overflow situations. By counting lines and spaces, you can calculate what
happens if overflow occurs on each detail, total, and exception line.

Chapter 3. Program Cycle 23

Program Cycle

Lookahead Routine
Figure 6 shows the specific steps in the RPG IV lookahead routine. The item
numbers in the following descriptions refer to the numbers in the figure.

The next record for the file being processed is read. However, if the file is a
combined or update file (identified by a C or U, respectively, in position 17 of
the file description specifications), the lookahead fields from the current
record being processed is extracted.

H The lookahead fields are extracted.

Ending a Program without a Primary File

If your program does not contain a primary file, you must specify a way for the
program to end:

* By setting the LR indicator on

e By setting the RT indicator on

¢ By setting an H1 through H9 indicator on
e By specifying the RETURN operation code

The LR, RT, H1 through H9 indicators, and the RETURN operation code, can be
used in conjunction with each other.

Program Control of File Processing

Specify a full procedural file (F in position 18 of the file description specifications) to
control all or partial input of a program. A full procedural file indicates that input is
controlled by program-specified calculation operations (for example, READ,
CHAIN). When both full procedural files and a primary file (P in position 18 of the
file description specifications) are specified in a program, some of the input is con-
trolled by the program, and other input is controlled by the cycle. The program
cycle exists when a full procedural file is specified; however, file processing occurs
at detail or total calculation time for the full procedural file.

The file operation codes can be used for program control of input. These file oper-
ation codes are discussed in Chapter 22, “Operation Codes” on page 281.

24 ILE RPG/400 Reference

Program Cycle

START

o Performs heading

operations. Performs

detall output operations.
If overflow line has been
reached, sefs on overflow

® Performs detall
calculations. Sets
resulting indicators.

Indicator.
[)
Moves data from record selected at
beginning of cycle Intfo processing area.

Sets off control level
indlcators. Sets off record
identifying indlcators.

Overflow indicator on? Yes, performs

overflow operations. Reads a record. L4
End-of-file? Yes, sets on
control level and LR Indicators
and skips to perform total ®
calculations.

LR indicator on? Yes, end of

program has been reached. Sefs on record identifying Indicators

for the record Just read. o
Change In control flelds?
® Performs total output operations. Yes, sets on control level o
If overflow line has been reached, indicators.
sets on overflow Indlcator.

* Performs total calculations.

Sets resulting indicators. Note: The boxed steps

are bypassed when no
primary flle exists;

that is, when the
programmer controls

all the input operations.

Figure 7. Programmer Control of Input Operation within the Program-Cycle

Chapter 3. Program Cycle 25

Program Cycle

Process next

Exception/Error? sequential instruction

n Set up file information
or program status data
structure if coded

Yes Setonindicatorand
process next
sequential instruction

Errorindicator
coded on operation?

iE Control passes to INFSR
or*PSSR subroutine

INFSRor*PSSR
subroutine present?

Return point specified?

No

I Returnto specified point ‘I

Status code
ﬂ 1121-1126 Resume current
present? operation

Percolate exception to
A caller ofthis procedure

E anxcct?opr:lgﬂlesck Seetextformore

information on the next point
inthis procedure.

E Issue message
torequester

Response cancel ?

Continue procedure

Cancel with Dump

Issue Dump

I

CloseFiles
Unlock Data Areas

Setprocedure so
thatitcan be called again

m Setreturn code and
percolate Function Check

H B O

Figure 8. Detail Flow of RPG IV Exception/Error Handling Routine

26 ILE RPG/400 Reference

Program Cycle

RPG IV Exception/Error Handling Routine
Figure 8 on page 26 shows the specific steps in the RPG IV exception/error han-
dling routine. The item numbers in the following description refer to the numbers in

the figure.

Set up the file information or procedure status data structure, if specified,
with status information.

A i the exception/error occurred on an operation code that has an indicator
specified in positions 73 and 74, the indicator is set on, and control returns
to the next sequential instruction in the calculations.

If the appropriate exception/error subroutine (INFSR or *PSSR) is present in
the procedure, the procedure branches to step 13; otherwise, the procedure
continues with step 4.

B If the Status code is 1121-1126 (see “Status Codes” on page 75), control
returns to the current instruction in the calculations. If not, the procedure
continues with step 5.

If the exception is a function check, the procedure continues with step 6. If

EEEEES =@ 8 o

(-
(3,

not, it branches to step 15.

An inquiry message is issued to the requester. For an interactive job, the
message goes to the requester. For a batch job, the message goes to
QSYSOPR. If QSYSOPR is not in break mode, a default response is
issued.

If the user's response is to cancel the procedure, the procedure continues
with step 8. If not, the procedure continues.

If the user's response is to cancel with a dump, the procedure continues with
step 9. If not, the procedure branches to step 10.

A dump is issued.

All files are closed and data areas are unlocked

The procedure is set so that it can be called again.

The return code is set and the function check is percolated.

Control passes to the exception/error subroutine (INFSR or *PSSR).

If a return point is specified in factor 2 of the ENDSR operation for the
exception/error subroutine, the procedure goes to the specified return point.
If a return point is not specified, the procedure goes to step 4. If a field
name is specified in factor 2 of the ENDSR operation and the content is not
one of the RPG IV-defined return points (such as *GETIN or *DETC), the pro-
cedure goes to step 6. No error is indicated, and the original error is
handled as though the factor 2 entry were blank.

If no invocation handles the exception, then it is promoted to function check
and the procedure branches to step 5. Otherwise, depending on the action
taken by the handler, control resumes in this procedure either at step 10 or
at the next machine instruction after the point at which the exception
occurred.

Chapter 3. Program Cycle 27

Program Cycle

28 ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators

An indicator is a one byte character field which contains either on (‘1) or off ('0'). It
is generally used to indicate the result of an operation or to condition (or control)
the processing of an operation.

efi ither by an entry on the specification or by the RPG IV
program itself. The positions on the specification in which you define an indicator
determine how the indicator is used. An indicator that has been defined can then
be used to condition calculation and output operations.

The RPG IV program sets and resets certain indicators at specific times during the
program cycle. In addition, the state of most indicators can be changed by calcu-
lation operations. All indicators except MR, 1P, KA through KN, and KP through
KY can be set on with the SETON operation code; all indicators except MR and 1P
can be set off with the SETOFF operation code.

This chapter is divided into the following topics:

« Indicators defined on the RPG IV specifications

e Indicators not defined on the RPG IV specifications
e Using indicators

* Indicators referred to as data.

Indicators Defined on RPG IV Specifications

You can specify the following indicators on the RPG IV specifications:

¢ Overflow indicator (the OFLIND keyword on the file description specifications).

* Record identifying indicator (positions 21 and 22 of the input specifications).

* Control level indicator (positions 63 and 64 of the input specifications).

« Field indicator (positions 69 through 74 of the input specifications).

¢ Resulting indicator (positions 71 through 76 of the calculation specifications).

e *IN array, *IN(xx) array element or *INxx field (See “Indicators Referred to As
Data” on page 56 for a description of how an indicator is defined when used
with one of these reserved words.).

The defined indicator can then be used to condition operations in the program.

Overflow Indicators

© Copyright IBM Corp. 1994

An overflow indicator is defined by the OFLIND keyword on the file description
specifications. It is set on when the last line on a page has been printed or
passed. Valid indicators are *INOA through *INOG, *INOV, and *INO1 through
*IN99. A defined overflow indicator can then be used to condition calculation and
output operations. A description of the overflow indicator and fetch overflow logic is
given in “Overflow Routine” on page 23.

29

Indicators Defined on RPG IV Specifications

Record Identifying Indicators

30

A record identifying indicator is defined by an entry in positions 21 and 22 of the
input specifications and is set on when the corresponding record type is selected
for processing. That indicator can then be used to condition certain calculation and
output operations. Record identifying indicators do not have to be assigned in any
particular order.

The valid record identifying indicators are:

01-99
H1-H9
L1-L9
LR
U1-Us
RT

For an externally described file, a record identifying indicator is optional, but, if you
specify it, it follows the same rules as for a program described file.

Generally, the indicators 01 through 99 are used as record identifying indicators.

However, the control level indicators (L1 through L9) and the last record indicator
(LR) can be used. If L1 through L9 are specified as record identifying indicators,
lower level indicators are not set on.

When you select a record type for processing, the corresponding record identifying
indicator is set on. All other record identifying indicators are off except when a file
operation code is used at detail and total calculation time to retrieve records from a
file (see below). The record identifying indicator is set on after the record is
selected, but before the input fields are moved to the input area. The record identi-
fying indicator for the new record is on during total time for the old record; there-
fore, calculations processed at total time using the fields of the old record cannot
be conditioned by the record identifying indicator of the old record. You can set the
indicators off at any time in the program cycle; they are set off before the next
primary or secondary record is selected.

If you use a file operation code on the calculation specifications to retrieve a record,
the record identifying indicator is set on as soon as the record is retrieved from the
file. The record identifying indicator is not set off until the appropriate point in the
RPG IV cycle. (See Figure 7 on page 25.) Therefore, it is possible to have several
record identifying indicators for the same file, as well as record-not-found indicators,
set on concurrently if several operations are issued to the same file within the same
RPG IV program cycle.

Rules for Assigning Record Identifying Indicators
When you assign record identifying indicators to records in a program described
file, remember the following:

* You can assign the same indicator to two or more different record types if the
same operation is to be processed on all record types. To do this, you specify
the record identifying indicator in positions 21 and 22, and specify the record
identification codes for the various record types in an OR relationship.

* You can associate a record identifying indicator with an AND relationship, but it
must appear on the first line of the group. Record identifying indicators cannot
be specified on AND lines.

ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

» An undefined record (a record in a program described file that was not
described by a record identification code in positions 23 through 46) causes the
program to halt.

« A record identifying indicator can be specified as a record identifying indicator
for another record type, as a field indicator, or as a resulting indicator. No
diagnostic message is issued, but this use of indicators may cause erroneous
results.

When you assign record identifying indicators to records in an externally described
file, remember the following:

* AND/OR relationships cannot be used with record format names; however, the
same record identifying indicator can be assigned to more than one record.

» The record format name, rather than the file name, must be specified in posi-
tions 7 through 16.

For an example of record identifying indicators, see Figure 9.

IFiTename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. st vv i e iineennenrnernnennnnnnen
Lttt iiiiiieinnnnnes Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
I*

I*Record identifying indicator 01 is set on if the record read

Ixcontains an S in position 1 or an A in position 1.

TINPUT1 NS 01 1¢Cs

I OR 1 CA

I 1 25 FLD1

I* Record identifying indicator 02 is set on if the record read

I* contains XYZA in positions 1 through 4.

I NS 02 1CX 2 CY 3¢

I AND 4 CA

I 1 15 FLDA
I 16 20 FLDB

I* Record identifying indicator 95 is set on if any record read

I* does not meet the requirements for record identifying indicators
I 01 or 02.

I NS 95

Figure 9 (Part 1 of 2). Examples of Record Identifying Indicators

Chapter 4. RPG IV Indicators 31

Indicators Defined on RPG IV Specifications

I*

I* For an externally described file, record identifying indicator 10
I* is set on if the ITMREC record is read and record identifying

I* indicator 20 is set on if the SLSREC or COMREC records are read.

IITMREC 10
ISLSREC 20
ICOMREC 20

Figure 9 (Part 2 of 2). Examples of Record Identifying Indicators

Control Level Indicators (L1-L9)

32

A control level indicator is defined by an entry in positions 63 and 64 of the input
specifications, designating an input field as a control field. It can then be used to
condition calculation and output operations. The valid control level indicator entries
are L1 through L9.

A control level indicator designates an input field as a control field. When a control
field is read, the data in the control field is compared with the data in the same
control field from the previous record. If the data differs, a control break occurs,
and the control level indicator assigned to the control field is set on. You can then
use control level indicators to condition operations that are to be processed only
when all records with the same information in the control field have been read.
Because the indicators stay on for both total time and the first detail time, they can
also be used to condition total printing (last record of a control group) or detail
printing (first record in a control group). Control level indicators are set off before
the next record is read.

A control break can occur after the first record containing a control field is read.
The control fields in this record are compared to an area in storage that contains
hexadecimal zeros. Because fields from two different records are not being com-
pared, total calculations and total output operations are bypassed for this cycle.

Control level indicators are ranked in order of importance with L1 being the lowest
and L9 the highest. All lower level indicators are set on when a higher level indi-
cator is set on as the result of a control break. However, the lower level indicators
can be used in the program only if they have been defined. For example, if L8 is
set on by a control break, L1 through L7 are also set on. The LR (last record)
indicator is set on when the input files are at end of file. LR is considered the
highest level indicator and forces L1 through L9 to be set on.

You can also define control level indicators as record identifying or resulting indica-
tors. When you use them in this manner, the status of the lower level indicators is
not changed when a higher level indicator is set on. For example, if L3 is used as
a resulting indicator, the status of L2 and L1 would not change if L3 is set on.

The importance of a control field in relation to other fields determines how you
assign control level indicators. For example, data that demands a subtotal should
have a lower control level indicator than data that needs a final total. A control field
containing department numbers should have a higher control level indicator than a
control field containing employee numbers if employees are to be grouped within
departments (see Figure 10 on page 34).

ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

Rules for Control Level Indicators
When you assign control level indicators, remember the following:

You can specify control fields only for primary or secondary files.

You cannot specify control fields for full procedural files, binary format fields, or
look-ahead fields.

You cannot use control level indicators when an array name is specified in
positions 49 through 62 of the input specifications; however, you can use
control level indicators with an array element.

Control level compare operations are processed for records in the order in
which they are found, regardless of the file from which they come.

If you use the same control level indicator in different record types or in dif-
ferent files, the control fields associated with that control level indicator must be
the same length (see Figure 10 on page 34) except for date, time, and
timestamp fields which need only match in type (that is, they can be different
formats).

The control level indicator field length is the length of a control level indicator in
a record. For example, if L1 has a field length of 10 bytes in a record, the
control level indicator field length for L1 is 10 positions.

The control level indicator field length for split control fields is the sum of the
lengths of all fields associated with a control level indicator in a record. If L2
has a split control field consisting of 3 fields of length: 12 bytes, 2 bytes and 4
bytes; then the control level indicator field length for L2 is 18 positions.

If multiple records use the same control level indicator, then the control level

indicator field length is the length of only one record, not the sum of all the
lengths of the records.

Within a program, the sum of the control level indicator field lengths of all
control level indicators cannot exceed 256 positions.

Record positions in control fields assigned different control level indicators can

overlap in the same record type (see Figure 11 on page 35). For record types
that require control or match fields, the total length of the control or match field
must be less than or equal to 256. For example, in Figure 11 on page 35, 15

positions have been assigned to control levels.

Field names are ignored in control level operations. Therefore, fields from dif-
ferent record types that have been assigned the same control level indicator
can have the same name.

Control levels need not be written in any sequence. An L2 entry can appear
before L1. All lower level indicators need not be assigned.

If different record types in a file do not have the same number of control fields,
unwanted control breaks can occur.

Figure 12 on page 35 shows an example of how to avoid unwanted control breaks.

Chapter 4. RPG IV Indicators 33

Indicators Defined on RPG IV Specifications

34

E 2P D R AL P FUPI P S T DU PPN ; DR Uy AT
A+ EMPLOYEE MASTER FILE -- EMPMSTL

A R EMPREC PFILE (EMPMSTL)
A EMPLNO 6

A DEPT 3

A DIVSON 1

Ax

Ax (ADDITIONAL FIELDS)

Ax

A R EMPTIM PFILE(EMPMSTP)
A EMPLNO 6

A DEPT 3

A DIVSON 1

A*

Ax (ADDITIONAL FIELDS)

Figure 10 (Part 1 of 2). Control Level Indicators (Two Record Types)

L R R . R T TTT. TS DU P TR e R S
IFilename++SqNORiPoS1+NCCPOS2+NCCPOS3HNCC. oo v eviieiie it iiieiiiinnennnns
Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ..
I*

I*» In this example, control level indicators are defined for three
I» fields. The names of the control fields (DIVSON, DEPT, EMPLNO)
I* give an indication of their relative importance.

I* The division (DIVSON) is the most important group.

I» It is given the highest control level indicator used (L3).

I* The department (DEPT) ranks below the division;

I* L2 is assigned to it. The employee field (EMPLNO) has

I* the lowest control level indicator (L1) assigned to it.

I*

IEMPREC 10

I EMPLNO L1
I DIVSON L3
I DEPT L2
I*

I* The same control level indicators can be used for different record
I types. However, the control fields having the same indicators must
I*x be the same length. For records in an externally described file,
I the field attributes are defined in the external description.

I*

IEMPTIM 20

I EMPLNO L1
I DEPT L2
I DIVSON L3

Figure 10 (Part 2 of 2). Control Level Indicators (Two Record Types)

ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

Gontrel Fleld 1
———

129456789 1011121314 16 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30

Gontrol Fleld 2

/
A total of 15 positions has been
assigned to these control levels.

Figure 11. Overlapping Control Fields

(L2) (L2) (L1)
Salesman Salesman Salesman Item Number Amount
Number Name Number
9 2| 3 15 i 3 5| 6
Salesman Record ltem Record
Figure 12 (Part 1 of 4). How to Avoid Unwanted Control Breaks
I I A S PPN PP DUy’ SR, JAPPN. DU DU ¢ JUPRMPE. ST
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..vvvvnnenn. Cheesereaeeeeaeaeas
Tttt ittt iinaanns Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
ISALES 01
I 1 2 L2FLD L2
I ’ 3 15 NAME
IITEM 02
I 1 2 L2FLD L2
I 3 5 LI1FLD L1
I 6 8 AMT

Figure 12 (Part 2 of 4). How to Avoid Unwanted Control Breaks

Chapter 4. RPG IV Indicators 35

Indicators Defined on RPG IV Specifications

CLONO1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HiLokq. .
C* Indicator 11 is set on when the salesman record is read.

C*

cC o1 SETON 11

C*

C+ Indicator 11 is set off when the item record is read.

C* This allows the normal L1 control break to occur.

C*

C 02 SETOFF 11

C 02AMT ADD L1TOT L1TOT 50

CL1 L1TOT ADD L2TOT L2TOT 50

CL2 L2TOT ADD LRTOT LRTOT 50

C*

L I /SO SSPINC DU AP S VDU s DUPPE NP < JUPIIE SO S
OFilename++DF. .NOINOZNO3EXCnam++++B++A++Sb+Sa+t. . v o iiiiiiiiiienenennnnn.
Ovevennnnnnnnnn NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
OPRINTER D 01 11

0 L2FLD 5

0 NAME 25

0 D 02 1

0 L1FLD 15

0 AMT Z 15

(053

0* When the next item record causes an L1 control break, no total
0* output is printed if indicator 11 is on. Detail calculations
0+« are then processed for the item record.

0=*

OFilename++DF. .NOLNOZNO3EXCnam++++B++A++Sh+Sa+. .. vveeerenreeecencaccannns
1 N NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0 T LIN11 1

0 L1TOT ZB 25

0 27 'x!

0 T L2 1

0 L2TOT ZB 25

0 28 '*x!

0 T LR 1

0 LRTOT ZB 25

Figure 12 (Part 3 of 4). How to Avoid Unwanted Control Breaks

36 ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

01 JOHN SMITH . Unwanted 01 JOHN SMITH
control
100 3 break 100 3
100 2 100 2
5 ¥ 5 ®
101 4 101 4
4 * 4 %
9 % 9
02 JANE DOE N Unwanted 02 JANE DOE
control
100 6 break 100 6
100 2 100 2
* 8 =
101 3 101 3
3 * 3 *
11 19 e
20 20
Output Showing Unwanted Control Level Break Corrected Output

Figure 12 (Part 4 of 4). How to Avoid Unwanted Control Breaks

Different record types normally contain the same number of control fields.
However, some applications require a different number of control fields in some
records.

The salesman records contain only the L2 control field. The item records contain
both L1 and L2 control fields. With normal RPG IV coding, an unwanted control
break is created by the first item record following the salesman record. This is
recognized by an L1 control break immediately following the salesman record and
results in an asterisk being printed on the line below the salesman record.

* Numeric control fields are compared in zoned decimal format. Packed numeric
input fields lengths can be determined by the formula:

d=2n-1

Where d = number of digits in the field and n = length of the input field. The
number of digits in a packed numeric field is always odd; therefore, when a
packed numeric field is compared with a zoned decimal numeric field, the
zoned field must have an odd length.

¢ When numeric control fields with decimal positions are compared to determine
whether a control break has occurred, they are always treated as if they had no
decimal positions. For instance, 3.46 is considered equal to 346.

* If you specify a field as numeric, only the positive numeric value determines
whether a control break has occurred; that is, a field is always considered to be
positive. For example, -5 is considered equal to +5.

¢ Date and time fields are converted to *ISO format before being compared

¢ Graphic data is compared by hexadecimal value

Chapter 4. RPG IV Indicators 37

Indicators Defined on RPG IV Specifications

38

Split Control Field

A split control field is formed when you assign more than one field in an input
record the same control level indicator. For a program described file, the fields that
have the same control level indicator are combined by the program in the order
specified in the input specifications and treated as a single control field (see

Figure 13). The first field defined is placed in the high-order (leftmost) position of
the control field, and the last field defined is placed in the low-order (rightmost)
position of the control field.

P Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZr. ...
IMASTER 01

I 28 31 CUSNO L4

I 15 20 ACCTNO L4

I 50 52 REGNO L4

Figure 13. Split Control Fields

For an externally described file, fields that have the same control level indicator are
combined in the order in which the fields are described in the data description
specifications (DDS), not in the order in which the fields are specified on the input
specifications. For example, if these fields are specified in DDS in the following
order:

EMPNO
DPTNO
REGNO

and if these fields are specified with the same control level indicator in the following
order on the input specifications:

REGNO L3
DPTNO L3
EMPNO L3

the fields are combined in the following order to form a split control field: EMPNO
DPTNO REGNO.

Some special rules for split control fields are:

* For one control level indicator, you can split a field in some record types and
not in others if the field names are different. However, the length of the field,
whether split or not, must be the same in all record types.

¢ You can vary the length of the portions of a split control field for different record
types if the field names are different. However, the total length of the portions
must always be the same.

* A split control field can be made up of a combination of packed decimal fields
and zoned decimal fields so long as the field lengths (in digits or characters)
are the same.

* You must assign all portions of a split control field in one record type the same
field record relation indicator and it must be defined on consecutive specifica-
tion lines.

ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

« When a split control field contains a date, time, or timestamp field than all fields
in the split control field must be of the same type.

Figure 14 shows examples of the preceding rules.

IFiTename++SqNORiPos1+NCCPOS2+NCCPOS3+NCC. ..ot vr i

Iveiiiienneeneennennns. FmMt+SPFrom+sTo+++DcFiel d+++++++++LIMIFrPIMNZY. . ..
IDISK BC 91 95 C1

I OR 92 95 C2

I OR 93 95C3

I

I* A1l portions of the split control field must be assigned the same
I* control level indicator and all must have the same field record
I* relation entry.

I 1 5 FLD1A L1
I 46 50 FLD1B L1
I 11 13 FLDA L2
I 51 60 FLD2A L3
I 31 40 FLD2B L3
I 71 75 FLD3A L4 92
I 26 27 FLD3B L4 92
I 41 45 FLD3C L4 92
I 61 70 FLDB 92
I 21 25 FLDC 92
I 6 10 FLD3D L4 93
I 14 20 FLD3E L4 93

Figure 14. Split Control Fields—Special Rules

The record identified by a '1' in position 95 has two split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B

The record identified with a '2' in position 95 has three split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3A, FLD3B, and FLD3C

The third record type, identified by the 3 in position 95, also has three split control
fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3D and FLD3E

Field Indicators

A field indicator is defined by an entry in positions 69 and 70, 71 and 72, or 73 and
74 of the input specifications. The valid field indicators are:

01-99
H1-H9
u1-us
RT

You can use a field indicator to determine if the specified field or array element is
greater than zero, less than zero, zero, or blank. Positions 69 through 72 are valid

Chapter 4. RPG IV Indicators 39

Indicators Defined on RPG IV Specifications

for numeric fields only; positions 73 and 74 are valid for numeric or character fields.
An indicator specified in positions 69 and 70 is set on when the numeric input field
is greater than zero; an indicator specified in positions 71 and 72 is set on when
the numeric input field is less than zero; and an indicator specified in positions 73
and 74 is set on when the numeric input field is zero or when the character input
field is blank. You can then use the field indicator to condition calculation or output
operations.

A field indicator is set on when the data for the field or array element is extracted
from the record and the condition it represents is present in the input record. This
field indicator remains on until another record of the same type is read and the
condition it represents is not present in the input record, or until the indicator is set
off as the result of a calculation.

You can use halt indicators (H1 through H9) as field indicators to check for an error
condition in the field or array element as it is read into the program.

Rules for Assigning Field Indicators
When you assign field indicators, remember the following:

* Indicators for plus, minus, zero, or blank are set off at the beginning of the
program. They are not set on until the condition (plus, minus, zero, or blank) is
satisfied by the field being tested on the record just read.

* Field indicators cannot be used with entire arrays or with look-ahead fields.
However, an entry can be made for an array element.

* A numeric input field can be assigned two or three field indicators. However,
only the indicator that signals the result of the test on that field is set on; the

others are set off.

* [f the same field indicator is assigned to fields in different record types, its state
(on or off) is always based on the last record type selected.

* When different field indicators are assigned to fields in different record types, a
field indicator remains on until another record of that type is read. Similarly, a
field indicator assigned to more than one field within a single record type
always reflects the status of the last field defined.

» The same field indicator can be specified as a field indicator on another input
specification, as a resulting indicator, as a record identifying indicator, or as a
field record relation indicator. No diagnostic message is issued, but this use of
indicators could cause erroneous results, especially when match fields or level
control is involved.

* If the same indicator is specified in all three positions, the indicator is always
set on when the record containing this field is selected.

Resulting Indicators

40

A resulting indicator is defined by an entry in positions 71 through 76 of the calcu-
lation specifications. The purpose of the resulting indicators depends on the opera-
tion code specified in positions 26 through 35. (See the individual operation code
in Chapter 22, “Operation Codes” for a description of the purpose of the resulting
indicators.) For example, resulting indicators can be used to test the result field
after an arithmetic operation, to identify a record-not-found condition, to indicate an
exception/error condition for a file operation, or to indicate an end-of-file condition.

ILE RPG/400 Reference

Indicators Defined on RPG IV Specifications

The valid resulting indicators are:

01-99

H1-H9

OA-OG, OV

L1-1L9

LR

U1-Us

KA-KN, KP-KY (valid only with SETOFF)
RT

You can specify resulting indicators in three places (positions 71-72, 73-74, and
75-76) of the calculation specifications. The positions in which the resulting indi-
cator is defined determine the condition to be tested.

In most cases, when a calculation is processed, the resulting indicators are set off,
and, if the condition specified by a resulting indicator is satisfied, that indicator is
set on. However, there some exceptions to this rule, notably “LOOKUP (Look Up a
Table or Array Element)” on page 385, “SETOFF (Set Indicator Off)” on page 458,
and “SETON (Set Indicator On)” on page 459. A resulting indicator can be used
as a conditioning indicator on the same calculation line or in other calculations or
output operations. When you use it on the same line, the prior setting of the indi-
cator determines whether or not the calculation is processed. If it is processed, the
result field is tested and the current setting of the indicator is determined (see
Figure 15 on page 42).

Rules for Assigning Resulting Indicators
When assigning resulting indicators, remember the following:

« Resulting indicators cannot be used when the result field refers to an entire
array.

« If the same indicator is used to test the result of more than one operation, the
last operation processed determines the setting of the indicator.

e When L1 through L9 indicators are used as resulting indicators and are set on,
lower level indicators are not set on. For example, if L8 is set on, L1 through
L7 are not set on.

 If H1 through H9 indicators are set on when used as resulting indicators, the
program halts unless the halt indicator is set off prior to being checked in the
program cycle. (See Chapter 3, “Program Cycle” on page 13).

» The same indicator can be used to test for more than one condition depending
on the operation specified.

Chapter 4. RPG IV Indicators 41

Indicators Not Defined on RPG IV Specifications

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
Cx

C+ Two resulting indicators are used to test for the different

C+ conditions in a subtraction operation. These indicators are

C+ wused to condition the calculations that must be processed for

C+ a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)
C+ are greater than 40 and is then used to condition all operations

C+ necessary to find overtime pay. If Indicator 20 is not on

C+ (the employee worked 40 or more hours), regular pay based on a

C* 40-hour week is calculated.

C*

c HRSWKD SuUB 40 OVERTM 3 01020
C*

C N20OPAYRAT MULT (H) 40 PAY 6 2

C 100VERTM MULT (H) OVRRAT OVRPAY 6 2

C 100VRPAY ADD PAY PAY

C*

Cx If indicator 20 is on (employee worked less than 40 hours), pay
C+ based on less than a 40-hour week is calculated.

C 20PAYRAT MULT (H) HRSWKD PAY

C*

Figure 15. Resulting Indicators Used to Condition Operations

Indicators Not Defined on the RPG IV Specifications

Not all indicators that can be used as conditioning indicators in an RPG IV program
are defined on the specification forms. External indicators (U1 through U8) are
defined by a CL. command or by a previous RPG IV program. Internal indicators
(1P, LR, MR, and RT) are defined by the RPG IV program cycle itself.

External Indicators

42

The external indicators are U1 through U8. These indicators can be set in a CL
program or in an RPG IV program. In a CL program, they can be set by the SWS
(switch-setting) parameter on the CL commands CHGJOB (Change Job) or
CRTJOBD (Create Job Description). In an RPG IV program, they can be set as a
resulting indicator or field indicator.

The status of the external indicators can be changed in the program by specifying
them as resulting indicators on the calculation specifications or as field indicators
on the input specifications. However, changing the status of the 0S/400 job
switches with a CL program during processing of an RPG IV program has no effect
on the copy of the external indicators used by the RPG IV program. Setting the
external indicators on or off in the program has no effect on file operations. File
operations function according to the status of the U1 through U8 indicators when
the program is initialized. However, when a program ends normally with LR on, the
external indicators are copied back into storage, and their status reflects their last
status in the RPG IV program. The current status of the external indicators can then
be used by other programs.

Note: When using “RETURN (Return to Caller)” on page 444 with the LR indi-
cator off, you are specifying a return without an end and, as a result, no external
indicators are updated.

ILE RPG/400 Reference

Indicators Not Defined on RPG IV Specifications

Internal Indicators
Internal indicators include:

 First page indicator

¢ Last record indicator

¢ Matching record indicator
¢ Return Indicator.

First Page Indicator (1P)

The first page (1P) indicator is set on by the RPG IV program when the program
starts running and is set off by the RPG IV program after detail time output. The
first record will be processed after detail time output. The 1P indicator can be used
to condition heading or detail records that are to be written at 1P time. Do not use
the 1P indicator to condition output fields that require data from input records
because the input data will not be available.

The 1P indicator cannot be used to condition total or exception output lines and
should not be used in an AND relationship with control level indicators. The 1P
indicator cannot be specified as a resulting indicator.

Last Record Indicator (LR)

In a program that contains a primary file, the last record indicator (LR) is set on
after the last record from a primary/secondary file has been processed, or it can be
set on by the programmer.

The LR indicator can be used to condition calculation and output operations that
are to be done at the end of the program. When the LR indicator is set on, all
other control level indicators (L1 through L9) are also set on. If any of the indica-
tors L1 through L9 have not been defined as control level indicators, as record
identifying indicators, as resulting indicators, or by *INxx, the indicators are set on
when LR is set on, but they cannot be used in other specifications.

In a program that does not contain a primary file, you can set the LR indicator on
as one method to end the program. (For more information on how to end a
program without a primary file, see Chapter 3, “Program Cycle” on page 13.) To
set the LR indicator on, you can specify the LR indicator as a record identifying
indicator or a resulting indicator. If LR is set on during detail calculations, all other
control level indicators are set on at the beginning of the next cycle. LR and the
record identifying indicators are both on throughout the remainder of the detail
cycle, but the record identifying indicators are set off before LR total time.

Matching Record Indicator (MR)

The matching record indicator (MR) is associated with the matching field entries M1
through M9. It can only be used in a program when Match Fields are defined in
the primary and at least one secondary file.

The MR indicator is set on when all the matching fields in a record of a secondary
file match all the matching fields of a record in the primary file. It remains on
during the complete processing of primary and secondary records. It is set off
when all total calculations, total output, and overflow for the records have been
processed.

At detail time, MR always indicates the matching status of the record just selected
for processing; at total time, it reflects the matching status of the previous record. If

Chapter 4. RPG IV Indicators 43

Using Indicators

all primary file records match all secondary file records, the MR indicator is always
on.

Use the MR indicator as a field record relation indicator, or as a conditioning indi-
cator in the calculation specifications or output specifications to indicate operations
that are to be processed only when records match. The MR indicator cannot be
specified as a resulting indicator.

For more information on Match Fields and multifile processing, see Chapter 6,
“General File Considerations.”

Return Indicator (RT)

You can use the return indicator (RT) to indicate to the internal RPG IV logic that
control should be returned to the calling program. The test to determine if RT is on
is made after the test for the status of LR and before the next record is read. If RT
is on, control returns to the calling program. RT is set off when the program is
called again.

Because the status of the RT indicator is checked after the halt indicators (H1
through H9) and LR indicator are tested, the status of the halt indicators or the LR
indicator takes precedence over the status of the RT indicator. If both a halt indi-
cator and the RT indicator are on, the halt indicator takes precedence. If both the
LR indicator and RT indicator are on, the program ends normally.

RT can be set on as a record identifying indicator, a resulting indicator, or a field
indicator. It can then be used as a conditioning indicator for calculation or output
operations.

For a description of how RT can be used to return control to the calling program,
see “Communicating with Other Objects” in the ILE RPG/400 Programmer’s Guide.

Using Indicators

Indicators that you have defined as overflow indicators, control level indicators,
record identifying indicators, field indicators, resulting indicators, *IN, *IN(xx), *INxx,
or those that are defined by the RPG IV language can be used to condition files,
calculation operations, or output operations. An indicator must be defined before it
can be used as a conditioning indicator. The status (on or off) of an indicator is not
affected when it is used as a conditioning indicator. The status can be changed
only by defining the indicator to represent a certain condition.

File Conditioning

The file conditioning indicators are specified by the EXTIND keyword on the file
description specifications. Only the external indicators U1 through U8 are valid for
file conditioning. (The USROPN keyword can be used to specify that no implicit
OPEN should be done.)

If the external indicator specified is off when the program is called, the file is not
opened and file operations for that file are ignored while the program is running.
Primary and secondary input files are processed as if they were at end-of-file. The
end-of-file indicator is set on for all READ operations to that file. Input, calculation,
and output specifications for the file need not be conditioned by the external indi-
cator.

44 |LE RPG/400 Reference

Using Indicators

Rules for File Conditioning
When you condition files, remember the following:

« A file conditioning entry can be made for input, output, update, or combined
files.

« A file conditioning entry cannot be made for table or array input.

» Qutput files for tables can be conditioned by U1 through U8. If the indicator is
off, the table is not written.

* A record address file can be conditioned by U1 through U8, but the file proc-
essed by the record address file cannot be conditioned by U1 through U8.

« |f the indicator conditioning a primary file with matching records is off, the MR
indicator is not set on.

e Output does not occur for an output, an update, or a combined file if the indi-
cator conditioning the file is off.

« [f the indicator conditioning an input, an update, or a combined file is off, the
file is considered to be at end of file. The end-of-file indicator is set on for
READ, READC, READE, READPE, and READP operations. CHAIN, EXFMT,
SETGT, and SETLL operations are ignored and no indicators are set.

Field Record Relation Indicators

Field record relation indicators are specified in positions 67 and 68 of the input
specifications. The valid field record relation indicators are:

L1-L9
uU1-Us

Field record relation indicators cannot be specified for externally described files.

You use field record relation indicators to associate fields with a particular record
type when that record type is one of several in an OR relationship. The field
described on the specification line is available for input only if the indicator specified
in the field record relation entry is on or if the entry is blank. If the entry is blank,
the field is common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators

You can use a record identifying indicator (01 through 99) in positions 67 and 68 to
relate a field to a particular record type. When several record types are specified in
an OR relationship, all fields that do not have a field record relation indicator in
positions 67 and 68 are associated with all record types in the OR relationship. To
relate a field to just one record type, you enter the record identifying indicator
assigned to that record type in positions 67 and 68 (see Figure 16 on page 47).

An indicator (01 through 99) that is not a record identifying indicator can also be
used in positions 67 and 68 to condition movement of the field from the input area
to the input fields.

Control fields, which you define with an L1 through L9 indicator in positions 63 and
64 of the input specifications, and match fields, which are specified by a match

Chapter 4. RPG IV Indicators 45

Using Indicators

value (M1 through M9) in positions 65 and 66 of the input specifications, can also
be related to a particular record type in an OR relationship if a field record relation
indicator is specified. Control fields or match fields in the OR relationship that do
not have a field record relation indicator are used with all record types in the OR
relationship.

If two control fields have the same control level indicator or two match fields have
the same matching level value, a field record relation indicator can be assigned to
just one of the match fields. In this case, only the field with the field record relation
indicator is used when that indicator is on. If none of the field record relation indi-
cators are on for that control field or match field, the field without a field record
relation indicator is used. Control fields and match fields can only have entries of
01 through 99 or H1 through H9 in positions 67 and 68.

You can use positions 67 and 68 to specify that the program accepts and uses
data from a particular field only when a certain condition occurs (for example, when
records match, when a control break occurs, or when an external indicator is on).
You can indicate the conditions under which the program accepts data from a field
by specifying indicators L1 through L9, MR, or U1 through U8 in positions 67 and
68. Data from the field named in positions 49 through 62 is accepted only when
the field record relation indicator is on.

External indicators are primarily used when file conditioning is specified with the
“EXTIND(*INUx)” on page 190 keyword on the file description specifications.
However, they can be used even though file conditioning is not specified.

A halt indicator (H1 through H9) in positions 67 and 68 relates a field to a record
that is in an OR relationship and also has a halt indicator specified in positions 21
and 22.

Remember the following points when you use field record relation indicators:

 Control level (positions 63 and 64) and matching fields (positions 65 and 66)
with the same field record relation indicator must be grouped together.

 Fields used for control level (positions 63 and 64) and matching field entries
(positions 65 and 66) without a field record relation indicator must appear
before those used with a field record relation indicator.

 Control level (positions 63 and 64) and matching fields (positions 65 and 66)
with a field record relation indicator (positions 67 and 68) take precedence,
when the indicator is on, over control level and matching fields of the same
level without an indicator.

* Field record relations (positions 67 and 68) for matching and control level fields
(positions 63 through 66) must be specified with record identifying indicators
(01 through 99 or H1 through H9) from the main specification line or an OR
relation line to which the matching field refers. If multiple record types are spec-
ified in an OR relationship, an indicator that specifies the field relation can be
used to relate matching and control level fields to the pertinent record type.

* Noncontrol level (positions 63 and 64) and matching field (positions 65 and 66)
specifications can be interspersed with groups of field record relation entries
(positions 67 and 68).

46 ILE RPG/400 Reference

Using Indicators

¢ The MR indicator can be used as a field record relation indicator to reduce
processing time when certain fields of an input record are required only when a
matching condition exists.

» The number of control levels (L1 through L9) specified for different record types
in the OR relationship can differ. There can be no control level for certain
record types and a number of control levels for other record types.

« If all matching fields (positions 65 and 66) are specified with field record relation
indicators (positions 67 and 68), each field record relation indicator must have a
complete set of matching fields associated with it.

« If one matching field is specified without a field record relation indicator, a com-
plete set of matching fields must be specified for the fields without a field
record relation indicator.

N P N SUPIN: PR U’ SRR S TI T C FINPOR Oy SN
IFilename++SqNOR1Pos1+NCCPOS2+NCCPOS3+NCC. oo v v iin v iiieiiieineennnnrennns
ettt it Fmt+SPFrom+To+++DcField+++++++++L1IMIFrPTMnZr. ...
IREPORT AA 14 1C5
I OR 16 1C6
I 20 30 FLDB
I 2 10 FLDA 07
I*
I* Indicator 07 was specified elsewhere in the program.
I*
I 40 50 FLDC 14
I 60 70 FLDD 16
Figure 16. Field Record Relation

The file contains two different types of records, one identified by a 5 in position 1
and the other by a 6 in position 1. The FLDC field is related by record identifying
indicator 14 to the record type identified by a 5 in position 1. The FLDD field is
related to the record type having a 6 in position 1 by record identifying indicator 16.
This means that FLDC is found on only one type of record (that identified by a 5 in
position 1) and FLDD is found only on the other type. FLDA is conditioned by indi-
cator 07, which was previously defined elsewhere in the program. FLDB is found
on both record types because it is not related to any one type by a record identi-
fying indicator.

Function Key Indicators

You can use function key indicators in a program that contains a WORKSTN device
if the associated function keys are specified in data description specifications (DDS).
Function keys are specified in DDS with the CFxx or CAxx keyword. For an
example of using function key indicators with a WORKSTN file, see the WORKSTN
chapter in the ILE RPG/400 Programmer’s Guide.

Chapter 4. RPG IV Indicators 47

Using Indicators

Function Key Indicator Corresponding Func- Function Key Indicator Corresponding Func-
tion Key tion Key
KA 1 KM 13
KB 2 KN 14
KC 3 KP 15
KD 4 KQ 16
KE 5 KR 17
KF 6 KS 18
KG 7 KT 19
KH 8 KU 20
Kl 9 KV 21
KJ 10 KW 22
KK 11 KX 23
KL 12 KY 24

The function key indicators correspond to function keys 1 through 24. Function key
indicator KA corresponds to function key 1, KB to function key 2 . . . KY to function
key 24.

Function key indicators that are set on can then be used to condition calculation or
output operations. Function key indicators can be set off by the SETOFF opera-
tion.

Halt Indicators (H1-H9)

You can use the halt indicators (H1 through H9) to indicate errors that occur during
the running of a program. The halt indicators can be set on as record identifying
indicators, field indicators, or resulting indicators.

The halt indicators are tested at the *GETIN step of the RPG IV cycle (see
Chapter 3, “Program Cycle” on page 13). If a halt indicator is on, a message is
issued to the user. The following responses are valid:

¢ Set off the halt indicator and continue the program.
* Issue a dump and end the program.
e End the program with no dump.

If a halt indicator is on when a RETURN operation is processed or when the LR
indicator is on, the called program ends abnormally. The calling program is
informed that the called program ended with a halt indicator on.

For a detailed description of the steps that occur when a halt indicator is on, see
the detailed flowchart of the RPG IV cycle in Chapter 3, “Program Cycle” on
page 13.

48 ILE RPG/400 Reference

Using Indicators

Indicators Conditioning Calculations
Indicators that are used to specify the conditions under which a calculation is done
are to be defined elsewhere in the program. Indicators to condition calculations
can be specified in positions 7 and 8 and/or in positions 9 through 11.

Positions 7 and 8
You can specify control level indicators (L1 through L9 and LR) in positions 7 and 8
of the calculation specifications.

If positions 7 and 8 are blank, the calculation is processed at detail time, is a state-
ment within a subroutine, or is a declarative statement. If indicators L1 through L9
are specified, the calculation is processed at total time only when the specified indi-
cator is on. If the LR indicator is specified, the calculation is processed during the
last total time.

Note: An LO entry can be used to indicate that the calculation is a total calculation
that is to be processed on every program cycle.

Positions 9-11

You can use positions 9 through 11 of the calculation specifications to specify indi-
cators that control the conditions under which an operation is processed. You can
specify N is position 9 to indicate that the indicator should be tested for the value of
off ('0") The valid entries for positions 10 through 11 are:

01-99

H1-H9

MR

OA-0G, OV
L1-L9

LR

U1-Us

KA-KN, KP-KY
RT

Any indicator that you use in positions 9 through 11 must be previously defined as
one of the following types of indicators:

» Overflow indicators (file description specifications “OFLIND(*INxx)” on
page 192)

» Record identifying indicators (input specifications, positions 21 and 22)
» Control level indicators (input specifications, positions 63 and 64)
 Field indicators (input specifications, positions 69 through 74)

» Resulting indicators (calculation specifications, positions 71 through 76)
e External indicators

e Indicators are set on, such as LR and MR

* *IN array, *IN(xx) array element, or *INxx field (see “Indicators Referred to As
Data” on page 56 for a description of how an indicator is defined when used
with one of these reserved words).

If the indicator must be off to condition the operation, place an N in positions 9.
The indicators in grouped AND/OR lines, plus the control level indicators (if speci-

Chapter 4. RPG IV Indicators 49

Using Indicators

fied in positions 7 and 8), must all be exactly as specified before the operation is
done as in Figure 17 on page 50.

CLONO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
C*

C 25

CAN L1 SUB TOTAL TOTAL “

CL2 10

CANNL3TOTAL MULT 05 SLSTAX ﬂ

C*

Figure 17. Conditioning Operations (Control Level Indicators)

Assume that indicator 25 represents a record type and that a control level 2 break
occurred when record type 25 was read. L1 and L2 are both on. All operations
conditioned by the control level indicators in positions 7 and 8 are done before
operations conditioned by control level indicators in positions 9 through 11. There-
fore, the operation in] occurs before the operation in [[J. The operation in [}
is done on the first record of the new control group indicated by 25, whereas the
operation in [f] is a total operation done for all records of the previous control

group.

The operation in [[J can be done when the L2 indicator is on provided the other
conditions are met: Indicator 10 must be on; the L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control level 2
break occurs. These two indicators are used together because this operation is not
to be done when a control level 3 break occurs, even though L2 is also on.

Some special considerations you should know when using conditioning indicators in
positions 9 through 11 are as follows:

* With externally described work station files, the conditioning indicators on the
calculation specifications must be either defined in the RPG program or be
defined in the DDS source for the workstation file.

» With program described workstation files, the indicators used for the work-
station file are unknown at compile time of the RPG program. Thus indicators
01-99 are assumed to be declared and they can be used to condition the calcu-
lation specifications without defining them.

* Halt indicators can be used to end the program or to prevent the operation from
being processed when a specified error condition is found in the input data or
in another calculation. Using a halt indicator is necessary because the record
that causes the halt is completely processed before the program stops. There-
fore, if the operation is processed on an error condition, the results are in error.
A halt indicator can also be used to condition an operation that is to be done
only when an error occurs.

 If LR is specified in positions 9 through 11, the calculation is done after the last
record has been processed or after LR is set on.

* If a control level indicator is used in positions 9 through 11 and positions 7 and
8 are not used (detail time), the operation conditioned by the indicator is done
only on the record that causes a control break or any higher level control break.

50 ILE RPG/400 Reference

Using Indicators

« |f a control level indicator is specified in positions 7 and 8 (total time) and MR is
specified in positions 9 through 11, MR indicates the matching condition of the

previous record and not the one just read that caused the control break. After
all operations conditioned by control level indicators in positions 7 and 8 are
done, MR then indicates the matching condition of the record just read.

« |f positions 7 and 8 and positions 9 through 11 are blank, the calculation speci-

fied on the line is done at detail calculation time.

Figure 18 through Figure 19 show examples of conditioning indicators.

I* Field indicators can be used to condition operations. Assume the
I* program is to find weekly earnings including overtime. The over-
I* time field is checked to determine if overtime was entered.

Ix If the employee has worked overtime, the field is positive and -
I+ dindicator 10 is set on. In all cases the weekly regular wage

I is calculated. However, overtime pay is added only if

I* indicator 10 is on.

I*

ITIME AB 01

I 1 7 EMPLNO

I 8 10 O0VERTM 10
I 15 20 2RATE

I 21 25 2RATEOT

C*
C+ Field indicator 10 was assigned on the input specifications.
C+ It is used here to condition calculation operations.

C*

c EVAL (H) PAY
c 10 EVAL (H) PAY

RATE * 40
PAY + (OVERTM * RATEOT)

EI DU T SRR JUe: PUIE JURY SO SR R N R TR A
IFilenameSqNORi PosINCCPos2NCCPos3NCC. PFromTo++DField+LIMIFrPIMnZr. . . *
Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
I*

CLONO1Factorl+++++++0pcode (E) +Extended-factor2++++++++t+ttttttttttttttttst

Figure 18. Conditioning Operations (Field Indicators)

Chapter 4. RPG IV Indicators

51

Using Indicators

IFiTename++SgNORiPoS1+NCCPOS2+NCCPOS3+NCC. . vv e e it iee i iie i ieiein e,
Lo i it Fmt+SPFrom+To+++DcField+++++++++L1IM1FrP1MnZr. ...
I*

I* A record identifying indicator is used to condition an operation.
I* When a record is read with a T in position 1, the 01 indicator is
I» set on. If this indicator is on, the field named SAVE is added
I to SUM. When a record without T in position 1 is read, the 02

I* indicator is set on. The subtract operation, conditioned by 02,
I* then performed instead of the add operation.

I*

IFILE AA 01 1CT

I OR 02 INCT

I 10 15 2SAVE

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
Cx '

C+ Record identifying indicators 01 and 02 are assigned on the input

Cx specifications. They are used here to condition calculation

C+ operations.

C*
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
cC o1 ADD SAVE SUM 82

cC 02 SUB SAVE SUM 8 2

Figure 19. Conditioning Operations (Record Identifying Indicators)

Indicators Used in Expressions

Indicators can be used as booleans in expressions in the extended factor 2 field of

the calculation specification. They must be referred to as data (that is, using *IN or
*INxx). The following examples demonstrate this.

CLONO1Factorl+++++++0pcode (E) +Extended-factor2+++++++t++ttttttttttttttttt
C+ In these examples, the IF structure is performed only if 01 is on.
Cx =INO1 is treated as a boolean with a value of on or off.

C+ In the first example, the value of the indicator ('0' or '1') is
C* checked.
C IF *INO1

C+ In the second example, the Togical expression B < A is evaluated.
Cx If true, 01 is set on. If false 01 is set off. This is analogous
C* to using COMP with A and B and placing 01 in the appropriate

C+ resulting indicator position.

c EVAL *INO1 = B < A

Figure 20. Indicators Used in Expressions

See the expressions chapter and the operation codes chapter in this document for
more examples and further details.

Indicators Conditioning Output

Indicators that you use to specify the conditions under which an output record or an
output field is written must be previously defined in the program. Indicators to con-
dition output are specified in positions 21 through 29. All indicators are valid for
conditioning output.

52 ILE RPG/400 Reference

Using Indicators

The indicators you use to condition output must be previously defined as one of the
following types of indicators:

 Overflow indicators (file description specifications, “OFLIND(*INxx)” on
page 192)

» Record identifying indicators (input specifications, positions 21 and 22)

» Control level indicators (input specifications, positions 63 and 64)

« Field indicators (input specifications, positions 69 through 74)

» Resulting indicators (calcuiation specifications, positions 71 through 76)

* Indicators set by the RPG IV program such as 1P and LR

¢ External indicators set prior to or during program processing

* *IN array, *IN(xx) array element, or *INxx field (see “Indicators Referred to As
Data” on page 56 for a description of how an indicator is defined when used
with one of these reserved words).

If an indicator is to condition an entire record, you enter the indicator on the line
that specifies the record type (see Figure 21 on page 54). If an indicator is to
condition when a field is to be written, you enter the indicator on the same line as
the field name (see Figure 21 on page 54).

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that type of record is checked for
output. If you specify conditioning indicators, one indicator can be entered in each
of the three separate output indicator fields (positions 22 and 23, 25 and 26, and 28
and 29). If these indicators are on, the output operation is done. An N in the posi-
tion preceding each indicator (positions 21, 24, or 27) means that the output opera-
tion is done only if the indicator is not on (a negative indicator). No output line
should be conditioned by all negative indicators; at least one of the indicators
should be positive. If all negative indicators condition a heading or detail operation,
the operation is done at the beginning of the program cycle when the first page
(1P) lines are written.

You can specify output indicators in an AND/OR relationship by specifying AND/OR
in positions 16 through 18. An unlimited number of AND/OR lines can be used.

AND/OR lines can be used to condition output records, but they cannot be used to
condition fields. However, you can condition a field with more than three indicators
by using the EVAL operation in calculations. The following example illustrates this.

CLONO1Factorl+++++++0Opcode (E) +Extended-factor2++++++tttttttttttttttttttt
C* Indicator 20 is set on only if indicators 10, 12, 14,16, and 18
C* are set on.

C EVAL *IN20 = *IN10 AND *IN12 AND *IN14

C AND *IN16 AND *IN18
OFilename++DAddANOINOZNOZEXCNAMt++t, it sirin e reeenensensonsensansasanas
[NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

0+ OUTFIELD is conditioned by indicator 20, which effectively
0* means it is conditioned by all the indicators in the EVAL
0* operation.

OPRINTER E

0 20 OUTFIELD

Other special considerations you should know about for output indicators are as
follows:

Chapter 4. RPG IV Indicators 53

Using Indicators

The first page indicator (1P) allows output on the first cycle before the primary
file read, such as printing on the first page. The line conditioned by the 1P
indicator must contain constant information used as headings or fields for
reserved words such as PAGE and UDATE. The constant information is speci-
fied in the output specifications in positions 53 through 80. If 1P is used in an
OR relationship with an overflow indicator, the information is printed on every
page (see Figure 22 on page 55). Use the 1P indicator only with heading or
detail output lines. It cannot be used to condition total or exception output lines
or should not be used in an AND relationship with control level indicators.

If certain error conditions occur, you might not want output operation proc-
essed. Use halt indicators to prevent the data that caused the error from being
used (see Figure 23 on page 55).

To condition certain output records on external conditions, use external indica-
tors to condition those records.

See the Printer File section in the ILE RPG/400 Programmer’s Guide for a dis-
cussion of the considerations that apply to assigning overflow indicators on the
output specifications.

IR DR A S TR S JOP DO FPR N (DI T AT
OFilename++DF. .NOINO2NO3EXcnam++++B++A++Sh+Sat. . vveiiiriiniinrneenennnn
[0 S NOINO2NO3Field+++++++++YB. End++PConstant/editword/DTformat
0*

0* One indicator is used to condition an entire line of printing.

0* When 44 is on, the fields named INVOIC, AMOUNT, CUSTR, and SALSMN
0+ are all printed.

N

0%

OPRINT D 44 1

0 INVOIC 10

0 AMOUNT 18

0 CUSTR 65

0 SALSMN 85

0=

0* A control level indicator is used to condition when a field should
0* be printed. When indicator 44 is on, fields INVOIC, AMOUNT, and
0* CUSTR are always printed. However, SALSMN is printed for the

0+ first record of a new control group only if 44 and L1 are on.

0*

OPRINT D 44 1

0 INVOIC 10

0 AMOUNT 18

0 CUSTR 65

0 L1 SALSMN 85

Figure 21. Output Indicators

54 ILE RPG/400 Reference

Using Indicators

PO DU SUE SN RN SIS S SR, DR N . IR S T
OFilename++DF. .NOINO2NO3Excnam++++B++A++Sb+Sat. .o oveiiininiiirnenennns
[NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0=

0* The 1P indicator is used when headings are to be printed

0« on the first page only.

0*

OPRINT H 1P 3

0 8 'ACCOUNT'

[0E3

0* The 1P indicator and an overflow indicator can be used to print
0* headings on every page.

(053

OPRINT H 1P 31

0 OR OF

0 8 'ACCOUNT'

Figure 22. 1P Indicator

R DU S SUNT JAe: SO DY DU . JUIE ST T T AN
IFilename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. oo viiiiiiiieiiiiiniennnnnnnnes
PN Fmt+SPFrom+To+++DcField+++++++++LIMIFrPTMnZr. ...
I*

I* When an error condition (zero in FIELDB) is found, the halt
I* indicator is set on.

I%

IDISK AA 01

I 1 3 FIELDA L1

I 4 8 OFIELDB H1

CLONO1Factorl+++++++0pcode (E)+Factor2+++++++Resul t++++++++Len++D+HiLokq. .
C*
C* When H1 is on, all calculations are bypassed.

C*

C H GOTO END

C :

C : Calculations

C :

C END TAG

OFilename++DF. .NOINO2NO3EXCnam++++B++A++Sh+Sat. v i eiiiiiiiiineennnns
Ovevvnennnnnnns NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0%

0+« FIELDA and FIELDB are printed only if H1 is not on.
0% Use this general format when you do not want information that
0+ s in error to be printed.

0*

OPRINT H L1 0 201

0 50 "HEADING'
0 D 01NH1 1 0

0 FIELDA 5

0 FIELDB z 15

Figure 23. Preventing Fields from Printing

Chapter 4. RPG IV Indicators

55

Indicators Referred to As Data

Indicators Referred to As Data

*IN

*INxx

An alternative method of referring to and manipulating RPG IV indicators is provided
by the RPG IV reserved words *IN and *INxx.

The array *IN is a predefined array of 99 one-position, character elements repres-
enting the indicators 01 through 99. The elements of the array should contain only
the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN(xx) variable-index array element as a
field in an input record, as a result field, or as factor 1 in a PARM operation defines
indicators 01 through 99 for use in the program.

The operations or references valid for an array of single character elements are
valid with the array *IN except that the array *IN cannot be specified as a subfield
in a data structure, or as a result field of a PARM operation.

The field *INxx is a predefined one-position character field where xx represents any
one of the RPG IV indicators except 1P or MR.

The specification of the *INxx field or the *IN(n) fixed-index array element (where n
=1 -99) as a field in an input record, as a result field, or as factor 1 in a PARM
operation defines the corresponding indicator for use in the program.

You can specify the field *INxx wherever a one-position character field is valid
except that *INxx cannot be specified as a subfield in a data structure, as the result
field of a PARM operation, or in a SORTA operation.

Additional Rules

Remember the following rules when you are working with the array *IN, the array
element *IN(xx) or the field *INxx:

* Moving a character '0' (zero) or *OFF to any of these fields sets the corre-
sponding indicator off.

* Moving a character '1' (one) or *ON to any of these fields sets the corre-
sponding indicator on.

* Do not move any value, other than '0' (zero) or '1' (one), to *INxx. Any sub-
sequent normal RPG IV indicator tests may yield unpredictable results.

See Figure 24 on page 57 for some examples of indicators referred to as data.

56 ILE RPG/400 Reference

Indicators Referred to As Data

CLONO1Factorl+++++++Opcode (E)+Factor2+++++++Resul t++++++++Len++D+HiLokqg. .
C*

C* When this program is called, a single parameter is passed to

Cx control some logic in the program. The parameter sets the value

C* of indicator 50. The parameter must be passed with a character

C+ value of 1 or 0.

C .

C *ENTRY PLIST

C *IN50 PARM SWITCH 1
C*

C*

C* Subroutine SUB1 uses indicators 61 through 68. Before the

C* subroutine is processed, the status of these indicators used in
Cx the mainline program is saved. (Assume that the indicators are
C+ set off in the beginning of the subroutine.) After the subroutine
C+ 1is processed, the indicators are returned to their original state.
C*

C*

C MOVEA *IN(61) SAV8 8
C EXSR SUB1

C MOVEA SAV8 *IN(61)

Figure 24 (Part 1 of 2). Examples of Indicators Referred to as Data

Chapter 4. RPG IV Indicators 57

Summary of Indicators

C*

C+ A code field (CODE) contains a numeric value of 1 to 5 and is

C* used to set indicators 71 through 75. The five indicators are set
Cx off. Field X is calculated as 70 plus the CODE field. Field X is
C+ then used as the index into the array *IN. Different subroutines
C+ are then used based on the status of indicators 71 through 75.

C*

C MOVEA '00000' *IN(71)

c 70 ADD CODE X 30
C MOVE *0ON *IN(X)

c 7 EXSR CODE1

c 72 EXSR CODE2

c 73 EXSR CODE3

C 74 EXSR CODE4

C 75 EXSR CODE5

Figure 24 (Part 2 of 2). Examples of Indicators Referred to as Data

Summary of Indicators

Table 1 and Table 2 show a summary of where indicators are defined, what the
valid entries are, where the indicators are used, and when the indicators are set on
and off. Table 2 on page 59 indicates the primary condition that causes each type
of indicator to be set on and set off by the RPG IV program. “Function Key
Indicators” on page 47 lists the function key indicators and the corresponding func-
tion keys.

58 ILE RPG/400 Reference

Summary of Indicators

Table 1. Indicator Entries and Uses

Where Defined/Used

01-99

1P

H1-H9

L1-L9 LR [MR uUi-us RT

OA-OG KA-KN
ov KP-KY

User
Defined

Overflow indicator, file
description specifications,
OFLIND keyword

Record identifying indi-
cator input specifications,

positions 21-22

Control level, input spec-
ifications, positions 63-64

Field level, input specifi-
cations, positions 69-74

Resulting indicator, calcu-
lation specifications, posi-
tions 71-76

RPG
Defined

Internal Indicator

External Indicator

Used

File conditioning, file
description specifications

File record relation, input
specifications 67-683

Control level, calculation
specifications, positions
7-8

Conditioning indicators,
calculation specifications,
positions 9-11

Output indicators, output
specifications, positions
21-29

X

X4

X

X

1The overflow indicator must be defined on the file description specification first.
2KA through KN and KP through KY can be used as resulting indicators only with the SETOFF operation.

30nly a record identifying indicator from a main or OR record can be used to condition a control or match field. L1 or L9 cannot

be used to condition a control or match field.

4The 1P indicator is allowed only on heading and detail lines.

Table 2 (Page 1 of 2). When Indicators Are Set On and Off by the RPG IV Logic Cycle

Type of Set On Set Off
Indicator
Overflow When printing on or spacing or skipping past OA-OG, OV: After the following
the overflow line. heading and detail lines are completed.
01-99: By the user.
Record iden- When specified primary / secondary record Before the next primary/secondary record is
tifying has been read and before total calculations read during the next processing cycle.
are processed; immediately after record is
read from a full procedural file.
Control level When the value in a control field changes. All At end of following detail cycle.
lower level indicators are also set on.
Field indi- By blank or zero in specified fields, by plus in Before this field status is to be tested the next
cator specified field, or by minus in specified field. time.

Chapter 4. RPG IV Indicators 59

Summary of Indicators

Table 2 (Page 2 of 2). When Indicators Are Set On and Off by the RPG IV Logic Cycle

Type of Set On Set Off
Indicator
Resulting When the calculation is processed and the The next time a calculation is processed for

condition that the indicator represents is met.

which the same indicator is specified as a
resulting indicator and the specified condition
is not met.

Function key

When the corresponding function key is
pressed for WORKSTN files and at subse-
guent reads to associated subfiles.

By SETOFF or move fields logic for a
WORKSTN file.

External By CL command prior to beginning the By CL command prior to beginning the

u1-Us program, or when used as a resulting or a program, or when used as a resulting or when

field indicator. used as a resulting or a field indicator.

H1-H9 As specified by programmer. When the continue option is selected as a
response to a message, or by the pro-
grammer.

RT As specified by programmer. When the program is called again.

Internal Indi-

cators

1P At beginning of processing before any input Before the first record is read.

records are read.

LR After processing the last primary/secondary At the beginning of processing, or by the pro-

record of the last file or by the programmer. grammer.

MR If the match field contents of the record of a When all total calculations and output are

secondary file correspond to the match field
contents of a record in the primary file.

completed for the last record of the matching
group.

60

ILE RPG/400 Reference

File Information Data Structure

Chapter 5. Exception/Error Data Structures and Subroutines

File Exception/Errors

File Information Data Structure

A file information data structure (INFDS) can be defined for each file to make file
exception/error and file feedback information available to the program. The file
information data structure must be unique for each file. The file information data
structure contains the following feedback information:

¢ File Feedback (length is 80)
Open Feedback (length is 160)
Input/Output Feedback (length is 126)

Device Specific Feedback (length is variable)
Get Attributes Feedback (length is variable)

Note: The get attributes feedback uses the same positions in the INFDS as the
input/output feedback and device specific feedback. This means that if you have a
get attributes feedback, you cannot have input/output feedback or device feedback,
and vise versa.

The length of the INFDS depends on what fields you have declared in your INFDS.
The minimum length of the INFDS is 80.

File Feedback Information

The file feedback information starts in position 1 and ends in position 80 in the file
information data structure. The file feedback information contains data about the
file which is specific to RPG. This includes information about the error/exception
that identify:

» The name of the file for which the exception/error occurred

» The record being processed when the exception/error occurred or the record
that caused the exception/error

* The last operation being processed when the exception/error occurred

¢ The status code

¢ The RPG IV routine in which the exception/error occurred.
The fields from position 1 to position 66 in the file feedback section of the INFDS
are always provided and updated even if INFDS is not specified in the program.

The fields from position 67 to position 80 of the file feedback section of the INFDS
are only updated after a POST operation to a specific device.

If INFDS is not specified, the information in the file feedback section of the INFDS
can be output using the DUMP operation. For more information see “DUMP
(Program Dump)” on page 358.

Overwriting the file feedback section of the INFDS may cause unexpected results in
subsequent error handling and is not recommended.

© Copyright IBM Corp. 1994 61

File Information Data Structure

The location of some of the more commonly used the subfields in the file feedback
section of the INFDS is defined by special keywords. The contents of the file feed-
back section of the INFDS along with the special keywords and their descriptions
can be found in the following tables:

Table 3 (Page 1 of 2). Contents of the File Feedback Information Available in the File Information Data Struc-
ture (INFDS)
From To
(Posi- (Posi-
tions tions Format | Length | Keyword Information
26-32) 33-39)
1 8 Char- 8 *FILE The first 8 characters of the file name.
acter
9 9 Char- 1 Open indication (1 = open).
acter
10 10 Char- 1 End of file (1 = end of file)
acter
11 15 Zoned 5,0 *STATUS Status code. For a description of these codes,
decimal see “Status Codes” on page 75.
16 21 Char- 6 *OPCODE Operation code The first five positions (left-
acter adjusted) specify the type of operation by using
the character representation of the calculation
operation codes. For example, if a READE was
being processed, READE is placed in the left-
most five positions.
If the operation was an implicit operation (for
exampie, a primary file read or update on the
output specifications), the equivalent operation
code is generated (such as READ or UPDAT)
and placed in location *OPCODE.
Operation codes which have 6 letter names will
be shortened to 5 letters.
DELETE DELET
EXCEPT EXCPT
READPE REDPE
UNLOCK UNLCK
UPDATE UPDAT
The remaining position contains one of the
following:
F The last operation was specified for a file
name.
R The last operation was specified for a
record.
| The last operation was an implicit file oper-
ation.
22 29 Char- 8 *ROUTINE First 8 characters of the procedure name or zero
acter if the call is by procedure pointer.
30 37 Char- 8 RPG IV source listing line number.
acter
38 42 Zoned | 5,0 User-specified reason for error on SPECIAL file.
decimal

62 ILE RPG/400 Reference

File Information Data Structure

Table 3 (Page 2 of 2). Contents of the File Feedback Information Available in the File Information Data Struc-

ture (INFDS)

From To
(Posi- (Posi-
tions tions Format | Length | Keyword Information
26-32) 33-39)
38 45 Char- 8 *RECORD For a program described file the record identi-
acter fying indicator is piaced iefi-adjusted in the fieid;
the remaining six positions are filled with blanks.
For an externally described file, the first 8 charac-
ters of the name of the record being processed
when the exception/error occurred.
46 52 Char- 7 Machine or system message number.
acter
53 66 Char- 14 Unused.
acter

Table 4. Contents of the File Feedback Information Available in

the File-Information Data Structure (INFDS) Valid

after a POST
From To
(Posi- (Posi-
tions tions Format | Length | Keyword Information
26-32) 33-39)
67 70 Zoned 4,0 *SIZE Screen size (product of the number of rows and
decimal the number of columns on the device screen).
71 72 Zoned 2,0 *INP The display's keyboard type. Set to 00 if the
decimal keyboard is alphanumeric or katakana. Set to 10
if the keyboard is ideographic.
73 74 Zoned 2,0 *OuT The display type. Set to 00 if the display is
decimal alphanumeric or katakana. Setto 10 if the
display is ideographic. Set to 20 if the display is
DBCS.
75 76 Zoned 2,0 *MODE Always set to 00.
decimal

INFDS File Feedback Example: To specify an INFDS which contains fields in the
file feedback section, you can make the following entries:

» Specify the INFDS keyword on the file description specification with the name
of the file information data structure
» Specify the file information data structure and the subfields you wish to use on

a definition specification.

» Specify special keywords left-adjusted, in the FROM field (positions 26-32) on
the definition specification, or specify the positions of the fields in the FROM
field (position 26-32) and the TO field (position 33-39).

Chapter 5. Exception/Error Data Structures and Subroutines 63

File Information Data Structure

FMYFILE

DFILEFBK
D FILE
OPEN_IND
EOF_IND
STATUS
OPCODE
ROUTINE
LIST_NUM
SPCL_STAT
RECORD
MSGID
SCREEN
NLS_IN
NLS_OUT
NLS_MODE

(=B — I~ — I — B — B — B — B — B — B — B — B —]

IF

E

DS

FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++ttttttttttttttt+ttt++++Comments+++++++++

DISK INFDS (FILEFBK)

DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++t++t+ttttttttttt+tt++++Comment s++++++++++

*FILE * File name
9 9 * File open?
10 10 * File at eof?
*STATUS * Status code
*0PCODE * Last opcode
*ROUTINE * RPG Routine
30 37 * Listing line
38 425 0 * SPECIAL status
*RECORD * Record name
46 52 * Error MSGID
*SIZE * Screen size
*=INP * NLS Input?
*0UT * NLS Output?
*MODE * NLS Mode?

Figure 25. Example of Coding an INFDS with File Feedback Information

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Open Feedback Information

Positions 81 through 240 in the file information data structure contain open feed-
back information. The contents of the file open feedback area are copied by RPG
to the open feedback section of the INFDS whenever the file associated with the
INFDS is opened. This includes members opened as a result of a read operation
on a multi-member processed file.

A description of the contents of the open feedback area, and what file types the
fields are valid for, can be found in Data Management

INFDS Open Feedback Example: To specify an INFDS which contains fields in
the open feedback section, you can make the following entries:

» Specify the INFDS keyword on the file description specification with the name
of the file information data structure

» Specify the file information data structure and the subfields you wish to use on
a definition specification.

¢ Use information in &dtamgmt to determine which fields you wish to include in
the INFDS. To calculate the From and To positions (positions 26 through 32
and 33 through 39 of the definition specifications) that specify the subfields of
the open feedback section of the INFDS, use the Offset, Data Type, and Length
given in Data Management and do the following calculations:

From = 81 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for overflow line number of a printer file, Data Management gives:

64 ILE RPG/400 Reference

File Information Data Structure

O0ffset = 107

Data Type is binary

Length = 2
Therefore,

From = 81 + 107 = 188,
To =188 - 1 + 2 = 189.

See subfield OVERFLOW in example below

FFilename++IPEASFR1en+LK1len+AIDevice+.Keywords+++++++t++t+t+ttttttttt++++++++Comment s++++++++++
FMYFILE 0 F 132 PRINTER INFDS(OPNFBK)

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++tt++ttttttttt+++H+++Comment s+H++++++++
DOPNFBK

D ODP_TYPE 81 82 * ODP Type

D FILE_NAME 83 92 * File name

D LIBRARY 93 102 * Library name

D SPOOL_FILE 103 112 * Spool file name
D SPOOL_LIB 113 122 * Spool file 1ib

D SPOOL_NUM 123 124B 0 * Spool file num

D RCD_LEN 125 126B 0 * Max record len

D KEY_LEN 127 128B 0 * Max key len

D MEMBER 129 138 * Member name

D TYPE 147 148B 0 * File type

D ROWS 152 153B 0 * Num PRT/DSP rows
D COLIMNS 154 155B 0 * Num PRT/DSP cols
D NUM_RCDS 156 159B 0 * Num of records

D ACC_TYPE 160 161 * Access type

D DUP_KEY 162 162 * Duplicate key?

D SRC_FILE 163 163 * Source file?

D VOL_OFF 184 185B 0 * Vol label offset
D BLK_RCDS 186 187B 0 * Max rcds in blk
D OVERFLOW 188 189B 0 * Overflow line

D BLK_INCR 190 191B 0 * B1k increment

D FLAGS1 196 196 * Misc flags

D REQUESTER 197 206 * Requester name

D OPEN_COUNT 207 208B 0 * Open count

D BASED_MBRS 211 212B 0 * Num based mbrs

D FLAGS2 213 213 * Misc flags

D OPEN_ID 214 215 * Open identifier
D RCDFMT_LEN 216 217B 0 * Max rcd fimt len
D CCSID 218 219B 0 * Database CCSID
D FLAGS3 220 220 * Misc flags

D NUM_DEVS 227 229B 0 * Num devs defined

Figure 26. Example of Coding an INFDS with Open Feedback Information

Input/Output Feedback Information

Positions 241 through 366 in the file information data structure are used for
input/output feedback information. The contents of the file common input/output
feedback area are copied by RPG to the input/output feedback section of the
INFDS:

* On every input/output operation if a POST for the file, with factor 1 blank has
not been specified anywhere in your program.

e Only after a POST for the file if a POST for the file, with factor 1 blank has
been specified anywhere in your program.

Chapter 5. Exception/Error Data Structures and Subroutines 65

File Information Data Structure

For more information see “POST (Post)” on page 428.

A description of the contents of the input/output feedback area can be found in
Data Management

INFDS Input/Output Feedback Example: To specify an INFDS which contains
fields in the open feedback section, you can make the following entries:

» Specify the INFDS keyword on the file description specification with the name
of the file information data structure

» Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in &dtamgmt to determine which fields you wish to include in
the INFDS. To calculate the From and To positions (positions 26 through 32
and 33 through 39 of the definition specifications) that specify the subfields of
the input/output feedback section of the INFDS, use the Offset, Data Type, and
Length given in Data Management and do the following calculations:

From = 241 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device class of a file, Data Management gives:

Offset = 30
Data Type is character
Length = 2

Therefore,

From = 241 + 30 = 271,
To =271 -1+ 2 =272.

See subfield DEV_CLASS in example below

DMYIOFBK
D

D WRITE_CNT
D READ_CNT

D WRTRD_CNT

D OTHER_CNT

D OPERATION
D I0_RCD_FMT
D DEV_CLASS

D I0_PGM_DEV
D I0_RCD_LEN

FFilename++IPEASFR1en+LKTen+AIDevice+.Keywords+t+++tttttttttttttt+tttttt++Comment s+++++++++

FMYFILE IF
DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++++++++tt+t+++++++++++++Comment s++++++++++

DISK INFDS (MYIOFBK)

* 241-242 not used
243 246B 0 * Write count
247 250B 0 * Read count
251 254B 0 * Write/read count
255 258B 0 * Other I/0 count
260 260 * Cuurent operation
261 270 * Rcd format name
271 272 * Device class
273 282 * Pgm device name
283 286B 0 * Red len of I/0

Figure 27. Example of Coding an INFDS with Input/Output Feedback Information

66 ILE RPG/400 Reference

File Information Data Structure

Device Specific Feedback Information

The device specific feedback information in the file information data structure starts
at position 367 in the INFDS, and contains input/output feedback information spe-
cific to a device.

The length of the INFDS when device specific feedback information is required,
depends on two factors: the device type of the file, and on whether DISK files are
keyed or not. The minimum length is 528; but some files require a longer INFDS.

o For WORKSTN files, the INFDS is long enough to hold the device-specific feed-
back information for any type of display or ICF file starting at position 241. For
example, if the longest device-specific feedback information requires 390 bytes,
the INFDS for WORKSTN files is 630 bytes long (240+390=630).

» For externally-described DISK files, the INFDS is at least long enough to hold
the longest key in the file beginning at position 401.

More information on the contents and length of the device feedback for database
file, printer files, ICF and display files can be found in Data Management.

The contents of the device specific input/output feedback area of the file are copied
by RPG to the device specific feedback section of the INFDS:

* On every input/output operation if a POST for the file, with factor 1 blank has
not been specified anywhere in your program.

« Only after a POST for the file if a POST for the file, with factor 1 blank has
been specified anywhere in your program.

For more information see “POST (Post)” on page 428.

INFDS Device Specific Feedback Examples: To specify an INFDS which con-
tains fields in the open feedback section, you can make the following entries:

» Specify the INFDS keyword on the file description specification with the name
of the file information data structure

» Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in &dtamgmt to determine which fields you wish to include in
the INFDS. To calculate the From and To positions (positions 26 through 32
and 33 through 39 of the definition specifications) that specify the subfields of
the input/output feedback section of the INFDS, use the Offset, Data Type, and
Length given in Data Management and do the following calculations:

From = 367 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for relative record number of a data base file, Data Management
gives:

Chapter 5. Exception/Error Data Structures and Subroutines 67

File Information Data Structure

Offset = 30

Data Type is binary

Length = 4
Therefore,

From = 367 + 30 = 397,
To =397 -1+ 4 = 272.

See subfield DB _RRN in DBFBK data structure in example below

FFilename++IPEASFR1en+LK1en+AIDevice+t.Keywords++++++++++++++++ttttttttt++++Comment s+ttt
FMYFILE 0 F 132 PRINTER INFDS(PRTFBK)

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++t+ttttttttttt+++++++++Comment S++++++++++
DPRTFBK DS

D CUR_LINE 367 368B 0 * Current Tine num
D CUR_PAGE 369 372B 0 * Current page cnt
D PRT_MAJOR 401 402 * Major ret code
D PRT_MINOR 403 404 * Minor ret code

Figure 28. Example of Coding an INFDS with Printer Specific Feedback Information

FFilename++IPEASFR1en+LK1en+AIDevice+.Keywords+++++++tt+ttttttttttttttt++++Comments+++++i+++
FMYFILE IF E DISK INFDS (DBFBK)

DName+++++++++++ETDs Fr0m+++To/ L+++IDc. Keyword s++++++++++++++H+ R Comment s
DDBFBK DS

D FDBK_SIZE 367 3768 * Size of DB fdbk
D JOIN_BITS 371 374B 0 * JFILE bits

D LOCK_RCDS 377 378B 0 * Nbr locked rcds

D POS_BITS 385 385 * File pos bits

D DLT_BITS 384 384 * Rcd deleted bits
D NUM_KEYS 387 388B 0 * Num keys (bin)

D KEY_LEN 393 394B 0 * Key length

D MBR_NUM 395 395B 0 * Member number

D DB_RRN 397 400B 0 * Relative-rcd-num
D KEY 401 2400 * Key value (max

D * size 2000)

Figure 29. Example of Coding an INFDS with Database Specific Feedback Information

68 ILE RPG/400 Reference

File Information Data Structure

FFilename++IPEASFR1en+LK1en+AIDevice+. Keywords++++tttttttttttttttttttttttt+Comment s+ttt

FMYFILE CF E WORKSTN INFDS(DSPFBK)
DName+++++++++++ETDsFrom+++To/L+++I1Dc. Keywords++++++++tt++ttttttttt+++++++++Comment s+++++++++

DDSPFBK DS

D DSP_FLAG1 367 368 * Display flags

D DSP_AID 369 369 * AID byte

D CURSOR 370 371 * Cursor location
D DATA_LEN 372 375B 0 * Actual data len
D SF_RRN 376 3778 0 * Subfiie rrn

D MIN_RRN 378 3798 0 * Subfile min rrn
D NUM_RCDS 380 381B 0 * Subfile num rcds
D ACT_CURS 382 383 * Active window

D * cursor location
D DSP_MAJOR 401 402 * Major ret code
D DSP_MINOR 403 404 * Minor ret code

Figure 30. Example of Coding an INFDS with Display Specific Feedback Information

FFilename++IPEASFR1en+LK1en+AIDevice+. Keywords++++++++tttttttttttttt+tt++++Comment s++++++++++
FMYFILE CF E WORKSTN INFDS (ICFFBK)

DName+++++++++++ETDSFrom+++To/L+++1Dc . Keywords++++++++ttttttttttttttttt++Comment s++++++++++
DICFFBK DS

D ICF_AID 369 369 * AID byte

D ICF_LEN 372 375B 0 * Actual data Ten
D ICF_MAJOR 401 402 * Major ret code
D ICF_MINOR 403 404 * Minor ret code
D SNA_SENSE 405 412 * SNA sense rc

D SAFE_IND 413 413 * Safe indicator
D RQSWRT 415 415 * Request write

D RMT_FMT 416 425 * Remote rcd fmt
D ICF_MODE 430 437 * Mode name

Figure 31. Example of Coding an INFDS with ICF Specific Feedback Information

Get Attributes Feedback Information

The get attributes feedback information in the file information data structure starts
at position 241 in the INFDS, and contains information about a display device or ICF
session (a device associated with a WORKSTN file). The end position of the get
attributes feedback information depends on the length of the data returned by a get
attributes data management operation. The get attributes data management opera-
tion is performed when a POST with a program device specified for factor 1 is
used.

More information about the contents and the length of the get attributes data can
be found in Data Management.

INFDS Get Attributes Feedback Example: To specify an INFDS which contains
fields in the get attributes feedback section, you can make the following entries:

« Specify the INFDS keyword on the file description specification with the name
of the file information data structure

» Specify the file information data structure and the subfields you wish to use on
a definition specification.

» Use information in &dtamgmt to determine which fields you wish to include in
the INFDS. To calculate the From and To positions (positions 26 through 32
and 33 through 39 of the definition specifications) that specify the subfields of

Chapter 5. Exception/Error Data Structures and Subroutines 69

File Information Data Structure

the get attributes feedback section of the INFDS, use the Offset, Data Type, and
Length given in Data Management and do the following calculations:

From = 241 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device type of a file, Data Management gives:

Offset = 31
Data Type is character
Length = 6

Therefore,

From = 241 + 31 = 272,
To =272 -1+ 6 =277.

See subfield DEV_TYPE in example below

70 ILE RPG/400 Reference

File Information Data Structure

FFilename++IPEASFRIent+LK1en+AIDevice+.Keywords++++ttttttttttttttttttttttt++Comments+t+++
FMYFILE CF E WORKSTN INFDS (DSPATRFBK)

DName+++++++++++ETDs Fr‘om+++T0/ L+++IDc. Ke_ywords+++++++++++++++++++++++++++++C0mments++++++++++
DDSPATRFBK DS

PGM_DEV 241 250
DEV_DSC 251 260
USER_ID 261 270
DEV_CLASS 271 271
DEV_TYPE 272 277
REQ_DEV 278 278
ACQ_STAT 279 279
INV_STAT 280 280
DATA_AVAIL 281 281
NUM_ROWS 282 283B 0
NUM_COLS 284 285B 0
BLINK 286 286
LINE_STAT 287 287
DSP_LOC 288 288
DSP_TYPE 289 289
KBD_TYPE 290 290
CTL_INFO 342 342
COLOR_DSP 343 343
GRID_DSP 344 344

Program device
Dev description
User ID

Device class
Device type
Requester?
Acquire status
Invite status
Data available
Number of rows
Number of cols
Allow blink?
Online/offline?
Display location
Display type
Keyboard type
Controller info
Color capable?
Grid line dsp?

% ok ok Ok %k Ok ok F ok F ok F F F F X F *

[I — B — I — B — I — B — i — B — i — i — N — i — B — i — i — i — i — i —) —

* Following fields apply to ISDN...

D ISDN_LEN 385 386B 0 * Rmt number len
D ISDN_TYPE 387 388 * Rmt number type
D ISDN_PLAN 389 390 * Rmt number plan
D ISDN_NUM 391 430 * Rmt number

D ISDN_SLEN 435 4368 0 * Rmt sub-address
D * length

D ISDN_STYPE 437 438 * Rmt sub-address
D * type

D ISDN_SNUM 439 478 * Rmt sub-address
D ISDN_CON 480 480 * Connection

D ISDN_RLEN 481 482B 0 * Rmt address len
D ISDN_RNUM 483 514 * Rmt address

D ISDN_ELEN 519 520 * Extension len

D ISDN_ETYPE 521 521 * Extension type
D ISDN_ENUM 522 561 * Extension num
D ISDN_XTYPE 566 566 * X.25 call type
D

Figure 32. Example of Coding an INFDS with Display file Get Attributes Feedback Information

Chapter 5. Exception/Error Data Structures and Subroutines 71

File Information Data Structure

FMYFILE CF E

DICFATRFBK DS

D PGM_DEV 241 250
D DEV_DSC 251 260
D USER_ID 261 270
D DEV_CLASS 271 271
D DEV_TYPE 272 272
D REQ_DEV 278 278
D ACQ_STAT 279 279
D INV_STAT 280 280
D DATA_AVAIL 281 281
D SES_STAT 291 291
D SYNC_LVL 292 292
D CONV_TYPE 293 293

D RMT_LOC 294 301
D LCL_LU 302 309
D LCL_NETID 310 317
D RMT_LU 318 325
D RMT_NETID 326 333
D APPC_MODE 334 341
D LU6_STATE 345 345
D LU6_COR 346 353
D

D+ Following fields apply to ISDN...
D ISDN_LEN 385 386B 0
D ISDN_TYPE 387 388
D ISDN_PLAN 389 390
D ISDN_NUM 391 430
D ISDN_SLEN 435 436B 0
D ISDN_STYPE 437 438
D ISDN_SNUM 439 478
D ISDN_CON 480 480
D ISDN_RLEN 481 482B 0
D ISDN_RNUM 483 514
D ISDN_ELEN 519 520
D ISDN_ETYPE 521 521
D ISDN_ENUM 522 561
D ISDN_XTYPE 566 566

0k ok R Ok Ok Ok ¥ Ok ¥ Ok % Ak E ¥ F F * ¥ F

* OF O F ¥ Ok Ok Ok F X X F F *

FFilename++IPEASFR1en+LK1en+AIDevicet.Keywords++++++tttttttttttttttttt++t+Comment s++++t+t+++

WORKSTN INFDS(ICFATRFBK)
DName+++++++++++ETDSFrom+++To/L+++I1Dc. Keywords+++++++tttttttttttttttt+t++++Comment s++++++++++

Program device
Dev description
User ID
Device class
Device type
Requester?
Acquire status
Invite status
Data available
Session status
Synch level
Conversation typ
Remote location
Local LU name
Local net ID
Remote LU
Remote net ID
APPC Mode
LU6 conv state
LU6 conv
correlator

Rmt number len
Rmt number type
Rmt number plan
Rmt number
sub-addr Ten
sub-addr type
Rmt sub-address
Connection

Rmt address len
Rmt address
Extension len
Extension type
Extension num
X.25 call type

Figure 33 (Part 1 of 2). Example of Coding an INFDS with ICF file Get Attributes Feedback Information

72

ILE RPG/400 Reference

File Exception/Error Subroutine (INFSR)

D

D TRAN_PGM
P_LUWIDLN
P_LUNAMELN
P_LUNAME
P_LUWIDIN
P_LUWIDSEQ

(vl — B — B — B — B -]

D U_LUWIDLN
D U_LUNAMELN
D U_LUNAME
D U_LUWIDIN
D U_LUWIDSEQ

D+ Following info is available only when program was started
D+ as result of a received program start request... (P_ stands for protected)

D+ Following info is available only when a protected conversation
D* is started on remote system...

567 630 * Trans pgm name
631 631 * LUWID f1d len
632 632 * LU-NAME len
633 649 *= LU-NAME

650 655 * LUWID instance
656 657B 0 * LUWID seq num

(U_ stands for unprotected)

658 658 * LUWID f1d Ten
659 659 * LU-NAME 1len
660 676 *= LU-NAME

677 682 * LUWID instance
683 684B 0 * LUWID seq num

Figure 33 (Part 2 of 2). Example of Coding an INFDS with ICF file Get Attributes Feedback Information

Blocking Considerations

The fields of the input/output specific feedback in the INFDS and in most cases the
fields of the device specific feedback information section of the INFDS, are not
updated for each operation to the file in which the records are blocked and
unblocked. The feedback information is updated only when a block of records is
transferred between RPG IV system and the OS/400 system. However, if you are
doing blocked input on a data base file, the relative record number and the key
value in the data base feedback section of the INFDS are updated:

» On every input/output operation if a POST for the file, with factor 1 blank has
not been specified anywhere in your program.

* Only after a POST for the file if a POST for the file, with factor 1 blank has
been specified anywhere in your program.

You can obtain valid updated feedback information by using the CL command
OVRDBF (Override with Database File) with SEQONLY (*NO) specified. If you use a
file override command, the RPG IV language does not block or unblock the records
in the file.

For more information on blocking and unblocking of records in RPG see ILE
RPG/400 Programmer’s Guide.

File Exception/Error Subroutine (INFSR)

To identify the user-written RPG IV subroutine that may receive control following file
exception/errors, specify the INFSR keyword on the File Description specification
with the name of the subroutine that receives control when exception/errors occur
on this file. The subroutine name can be *PSSR, which indicates that the program
exception/error subroutine is given control for the exception/errors on this file.

A file exception/error subroutine (INFSR) receives control when an exception/error
occurs on an implicit (primary or secondary) file operation or on an explicit file oper-
ation that does not have an indicator specified in positions 73 and 74. The file
exception/error subroutine can also be run by the EXSR operation code. Any of

Chapter 5. Exception/Error Data Structures and Subroutines 73

File Exception/Error Subroutine (INFSR)

74

the RPG IV operations can be used in the file exception/error subroutine. Factor 1
of the BEGSR operation and factor 2 of the EXSR operation must contain the name
of the subroutine that receives control (same name as specified with the INFSR
keyword on the file description specifications).

The ENDSR operation must be the last specification for the file exception/error sub-
routine and should be specified as follows:

Position Entry

6 C

7-11 Blank

12-25 Can contain a label that is used in a GOTO specification within the sub-
routine.

26-35 ENDSR

36-49 Optional entry to designate where control is to be returned following

processing of the subroutine. The entry must be a 6-position character
field, literal, or array element whose value specifies one of the following
return points.

Note: If the return points are specified as literals, they must be
enclosed in apostrophes. If they are specified as named constants, the
constants must be character and must contain only the return point with
no leading blanks. If they are specified in fields or array elements, the
value must be left-adjusted in the field or array element.

*DETL Continue at the beginning of detail lines.

*GETIN Continue at the get input record routine.

*TOTC Continue at the beginning of total calculations.

*TOTL Continue at the beginning of total lines.

*OFL Continue at the beginning of overflow lines.

*DETC Continue at the beginning of detail calculations.

*CANCL Cancel the processing of the program.

Blanks Return control to the RPG IV default error handler. This
applies when factor 2 is a value of blanks and when factor 2
is not specified. If the subroutine was called by the EXSR
operation and factor 2 is blank, control returns to the next
sequential instruction. Blanks are only valid at runtime.

50-76 Blank.

Remember the following when specifying the file exception/error subroutine:

* The programmer can explicitly call the file exception/error subroutine by speci-
fying the name of the subroutine in factor 2 of the EXSR operation.

» After the ENDSR operation of the file exception/error subroutine is run, the RPG
IV language resets the field or array element specified in factor 2 to blanks.
Thus, if the programmer does not place a value in this field during the proc-
essing of the subroutine, the RPG IV default error handler receives control fol-
lowing processing of the subroutine unless the subroutine was called by the
EXSR operation. Because factor 2 is set to blanks, the programmer can
specify the return point within the subroutine that is best suited for the
exception/error that occurred. If the subroutine was called by the EXSR opera-
tion and factor 2 of the ENDSR operation is blank, control returns to the next
sequential instruction following the EXSR operation. A file exception/error sub-
routine can handle errors in more than one file.

ILE RPG/400 Reference

Status Codes

Status Codes

« |f a file exception/error occurs during the start or end of a program, control
passes to the RPG IV default error handler, and not to the user-written file
exception/error or subroutine (INFSR).

» Because the file exception/error subroutine may receive control whenever a file
exception/error occurs, an exception/error could occur while the subroutine is
running if an 1/0 operation is processed on the file in error. If an
exception/error occurs on the file already in error while the subroutine is
running, the subroutine is called again; this will result in a program loop unless
the programmer codes the subroutine to avoid this problem. One way to avoid
such a program loop is to set a first-time switch in the subroutine. If it is not
the first time through the subroutine, set on a halt indicator and issue the
RETURN operation as follows:

2 DU AN . JUP R S . P A I TR e
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Lent++D+Hi LoEq. .
Cx If INFSR is already handling the error, exit.

c ERRRTN BEGSR

c SW IFEQ '’

(SETON H1
C RETURN

C* Otherwise, flag the error handler.

c ELSE

(s MOVE 'l SW

C :

(s

C :

C ENDIF

C+ End error processing.

c MOVE 'e’ SW

C ENDSR

Note: It may not be possible to continue processing the file after an 1/O error has
occurred. To continue, it may be necessary to issue a CLOSE operation and then
an OPEN operation to the file.

File Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is consid-
ered to be an exception/error condition. If the status code is greater than 99, the
error indicator, if specified in positions 73 and 74, is set on or the file
exception/error subroutine receives control. Location *STATUS is updated after
every file operation.

The codes in the following tables are placed in the subfield location *STATUS for
the file information data structure:

Chapter 5. Exception/Error Data Structures and Subroutines 79

Status Codes

Table 5. Normal Codes

Code Device! RC? Condition

00000 No exception/error.

00002 w n/a Function key used to end display.

00011 W,D,SQ 11xx End of file on a read (input).

00012 wW,D,SQ n/a No-record-found condition on a CHAIN, SETLL, and SETGT oper-
ations.

00013 w n/a Subfile is full on WRITE operation.

Note: 1“Device” refers to the devices for which the condition applies. The following abbreviations are used: P =

PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under

column RC apply only to WORKSTN files. 2The formula mmnn is used to described major/minor return codes:

mm is the major and nn the minor.

Table 6 (Page 1 of 2). Exception/Error Codes

Code Devicel RC? Condition

01011 W,D,SQ n/a Undefined record type (input record does not match record identi-
fying indicator).

01021 W,D,SQ n/a Tried to write a record that already exists (file being used has
unique keys and key is duplicate, or attempted to write duplicate rel-
ative record number to a _subfile).

01022 D n/a Referential constraint error detected on file member.

01031 W,D,SQ n/a Match field out of sequence.

01041 n/a n/a Array/table load sequence error.

01042 n/a n/a Array/table load sequence error. Alternate coliating sequence used.

01051 n/a n/a Excess entries in array/table file.

01071 w,D,SQ n/a Numeric sequence error.

011214 W n/a No indicator on the DDS keyword for Print key.

011224 w n/a No indicator on the DDS keyword for Roll Up key.

011234 w n/a No indicator on the DDS keyword for Roll Down key.

011244 w n/a No indicator on the DDS keyword for Clear key.

011254 W n/a No indicator on the DDS keyword for Help key.

011264 w n/a No indicator on the DDS keyword for Home key.

01201 w 34xx Record mismatch detected on input. '

01211 all n/a I/O operation to a closed file.

01215 all n/a OPEN issued to a file already opened.

012163 all yes Error on an implicit OPEN/CLOSE operation.

012173 all yes Error on an explicit OPEN/CLOSE operation.

01218 D,SQ n/a Record already locked.

01221 D,SQ n/a Update operation attempted without a prior read.

01222 D,SQ n/a Record cannot be allocated due to referential constraint error

01231 SP n/a Error on SPECIAL file.

01235 P n/a Error in PRTCTL space or skip entries.

76 ILE RPG/400 Reference

Status Codes

Table 6 (Page 2 of 2). Exception/Error Codes

Code Device? RC2 Condition

01241 D,SQ n/a Record number not found. (Record number specified in record
address file is not present in file being processed.)

01251 w 80xx 81xx Permanent I/O error occurred.

01255 w 82xx 83xx Session or device error occurred. Recovery may be possible.

01261 W n/a Attempt to exceed maximum number of acquired devices.

01271 w n/a Attempt to acquire unavailable device

01281 w n/a Operation to unacquired device.

01282 w 0309 Job ending with controlled option.

01284 w n/a Unable to acquire second device for single device file

01285 W 0800 Attempt to acquire a device already acquired.

01286 w n/a Attempt to open shared file with SAVDS or IND options.

01287 w n/a Response indicators overlap IND indicators.

01299 W,D,SQ yes Other 1/O error detected.

01331 w 0310 Wait time exceeded for READ from WORKSTN file.

Note: 1“Device” refers to the devices for which the condition applies. The following abbreviations are used: P =

PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files. 2The formula mmnn is used to described major/minor return codes:
mm is the major and nn the minor. 3Any errors that occur during an open or close operation will result in a
*STATUS value of 1216 or 1217 regardiess of the major/minor return code value. 4See Figure 8 on page 26 for
special handling.

The following table shows the major/minor return code to *STATUS value mapping

for errors that occur to AS/400 programs using WORKSTN files only. See the Data

Management for more information on Major/Minor return codes.

Major Minor *STATUS
00,02 all 00000

03 all (except 09,10) 00000

03 09 01282

03 10 01331

04 all 01299

08 all 012851
11 all 00011

34 all 01201
80,81 all 01251
82,83 all 01255
Note: :The return code field will not be updated
for a *STATUS value of 1285, 1261, or 1281
because these conditions are detected before
calling data management. To monitor for these
errors, you must check for the *STATUS value and
not for the corresponding major/minor return code
value.

Chapter 5. Exception/Error Data Structures and Subroutines

77

Program Status Data Structure

Program Exception/Errors

Some examples of program exception/errors are: division by zero, SQRT of a neg-
ative number, invalid array index, an error on a CALL, an error return from a called
program, and a start position or length out of range for a string operation. They
can be handled in one of the following ways:

 An indicator can be specified in positions 73 and 74 of the calculation specifica-
tions for an operation code. This indicator is set on if an exception/error occurs
during the processing of the specified operation. The optional program status
data structure is updated with the exception/error information. You can deter-
mine the action to be taken by testing the indicator.

e You can create a user defined ILE exception handler which will take control
when an exception occurs. For more information see ILE RPG/400
Programmer’s Guide.

¢ A program exception/error subroutine can be specified. You enter *PSSR in
factor 1 of a BEGSR operation to specify this subroutine. Information regarding
the program exception/error is made available through a program status data
structure that is specified with an S in position 23 of the data structure state-
ment on the definition specifications.

 If the indicator or the program exception/error subroutine is not present,
program exception/errors are handled by the RPG IV default error handler.

Program Status Data Structure

78

A program status data structure can be defined to make program exception/error
information available to an RPG IV program.

A data structure is defined as a program status data structure by an S in position
28 of the data structure statement. A program status data structure contains prede-
fined subfields that provide you with information about the program exception/error
that occurred. The location of the subfields in the program status data structure is
defined by special keywords or by predefined From and To positions. In order to
access the subfields, you assign a name to each subfield. The keywords must be
specified, left-adjusted in positions 26 through 39.

Information from the program status data structure is also provided in a formatted
dump. However, a formatted dump might not contain information for fields in the
PSDS if the PSDS is not coded, or the length of the PSDS does not include those
fields. For example, if the PSDS is only 275 bytes long, the time and date or
program running will appear as *N/A*. in the dump, since this information starts at
byte 276. For more information see “DUMP (Program Dump)” on page 358.

Note: Call performance with LR on will be greatly improved by having no PSDS,
or a PSDS no longer than 80 bytes, since some of the information to fill the PSDS
after 80 bytes is costly to obtain.

Table 7 on page 79 provides the layout of the subfields of the data structure and
the predefined From and To positions of its subfields that can be used to access
information in this data structure.

ILE RPG/400 Reference

Program Status Data Structure

Table 7 (Page 1 of 3). Contents of the Program Status Data Structure
From To
(Posi- (Posi-
tions tions Format | Length | Keyword Information
26-32) 33-39)
1 10 Char- 10 *PROC Procedure name
acter
11 15 Zoned 5,0 *STATUS Status code
decimal
16 20 Zoned 5,0 Previous status code.
decimal
21 28 Char- 8 RPG IV source listing line number. number.
acter
29 36 Char- 8 *ROUTINE Name of the RPG IV routine in which the excep-
acter tion or error occurred. This subfield is updated at
the beginning of an RPG IV routine or after a
program call only when the *STATUS subfield is
updated with a nonzero value. The following
names identify the routines:
*INIT Program initialization
*DETL Detail lines
*GETIN Get input record
*TOTC Total calculations
*TOTL Total lines
*DETC Detail calculations
*OFL Overflow lines
*TERM Program ending
*ROUTINE Name of program or procedure
called (first 8 characters).
Note: *ROUTINE is not valid unless you use the
normal RPG IV cycle. Logic that takes the
program out of the normal RPG IV cycle may
cause *ROUTINE to reflect an incorrect value.
37 39 Zoned 3,0 *PARMS Number of parameters passed to this program
decimal from a calling program
40 42 Char- 3 Exception type (CPF for a OS/400 system excep-
acter tion or MCH for a machine exception).
43 46 Char- 4 Exception number. For a CPF exception, this
acter field contains a CPF message number. For a
machine exception, it contains a machine excep-
tion number.
47 50 Char- 4 Reserved
acter
51 80 Char- 30 Work area for messages. This area is only
acter meant for internal use by the RPG IV compiler.
The organization of information will not always be
consistent. It can be displayed by the user.
81 90 Char- 10 Name of library in which the program is located.
acter
91 170 Char- 80 Retrieved exception data. CPF messages are
acter placed in this subfield when location *STATUS
contains 09999.

Chapter 5. Exception/Error Data Structures and Subroutines 79

Program Status Data Structure

Table 7 (Page 2 of 3). Contents of the Program Status Data Structure

From To
(Posi- (Posi-
tions tions Format | Length | Keyword Information
26-32) 33-39)
171 174 Char- 4 Identification of the exception that caused
acter RNX9001 exception to be signaled.
175 190 Char- 16 Unused.
acter
191 198 Char- 8 Date (*DATE format) the job entered system. In
acter the case of batch jobs submitted for overnight
processing, those run after midnight will carry the
next day's date.
199 200 Zoned 2,0 First 2 digits of a 4-digit year. The same as the
decimal first 2 digits of *YEAR.
201 208 Char- 8 Name of file on which the last file operation
acter occurred (updated only when an error occurs).
209 243 Char- 35 Status information on the last file used. This
acter information includes the status code, the RPG IV
opcode, the RPG IV routine name, the source
listing line number, and record name. It is
updated only when an error occurs.
Note: The opcode name is in the same form as
*OPCODE in the INFDS
244 253 Char- 10 Job name.
acter
254 263 Char- 10 User name from the user profile.
acter
264 269 Zoned 6,0 Job number.
decimal
270 275 Zoned 6,0 Date (in UDATE format) the job was entered in
decimal the system (UDATE is derived from this date). In
the case of batch jobs submitted for overnight
processing, those run after midnight will carry the
next day's date.
276 281 Zoned 6,0 Date of program running (the system date in
decimal UDATE format).
282 287 Zoned 6 Time of program running in the format hhmmess.
decimal | (zero
decimal
posi-
tions)
288 293 Char- 6 Date (in UDATE format) the program was com-
acter piled.
294 299 Char- 6 Time (in the format hhmmss) the program was
acter compiled.
300 303 Char- 4 Level of the compiler.
acter
304 313 Char- 10 Source file name.
acter

80 ILE RPG/400 Reference

Program Status Data Structure

Table 7 (Page 3 of 3). Contents of the Program Status Data Structure

From To

(Posi- (Posi-

tions tions Format | Length | Keyword Information

26-32) 33-39)

314 323 Char- 10 Source library name.
acter

324 333 Char- 10 Source file member name.
acter

334 343 Char- 10 Program containing procedure.
acter

344 353 Char- 10 Module containing procedure.
acter

354 429 char- 76 Unused.
acter

Program Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is consid-
ered to be an exception/error condition. If the status code is greater than 99, the
error indicator, if specified in positions 73 and 74, is set on, or the program
exception/error subroutine receives control. Location *STATUS is updated when an
exception/error occurs.

The following codes are placed in the st

status data structure:

bfield location *STATUS for the program

Normal Codes

Code Condition
00000 No exception/error occurred
00001 Called program returned with the LR indicator on.

Exception/Error Codes

Code Condition

00100 Value out of range for string operation

00101 Negative square root

00102 Divide by zero

00103 An intermediate result is not large enough to contain the result.

00112 Invalid Date, Time or Timestamp value.

00113 Date overflow or underflow. (For example, when the result of a Date cal-
culation results in a number greater than *Hival or less than *Loval.)

00114 Date mapping errors, where a Date is mapped from a 4 character year
to a 2 character year and the date range is not 1940-2039.

00120 Table or array out of sequence.

00121 Array index not valid

00122 OCCUR outside of range

00123 Reset attempted during initialization step of program

00202 Called program or procedure failed; halt indicator (H1 through H9) not

on
00211 Error calling program or procedure
00221 Called program tried to use a parameter not passed to it.

Chapter 5. Exception/Error Data Structures and Subroutines 81

Program Status Data Structure

82

00222
00231
00232
00233
00299
00333
00401
00402
00411
00412
00413
00414
00415
00421
00431
00432
00450
00501
00502
00802
00803
00804
00805
00907
00970

09998
09999

Pointer or parameter error

Called program or procedure returned with halt indicator on

Halt indicator on in this program

Halt indicator on when RETURN operation run

RPG IV formatted dump failed

Error on DSPLY operation

Data area specified on IN/OUT not found

*PDA not valid for non-prestart job

Data area type or length does not match

Data area not locked for output

Error on IN/OUT operation

User not authorized to use data area

User not authorized to change data area

Error on UNLOCK operation

Data area previously locked by another program

Data area locked by program in the same process

Character field not entirely enclosed by shift-out and shift-in characters
Failure to retrieve sort sequence.

Failure to convert sort sequence.

Commitment control not active.

Rollback operation failed.

Error occurred on COMMIT operation

Error occurred on ROLBK operation

Decimal data error (digit or sign not valid)

The level number of the compiler used to generate the program does
not agree with the level number of the RPG IV run-time subroutines.
Internal failure in RPG IV compiler or in run-time subroutines
Program exception in system routine.

PSDS Example: To specify a PSDS in your program, you code the program status
data structure and the subfields you wish to use on a definition specification.

ILE RPG/400 Reference

[— B — i — B — I — B — i B — i — i — B — B — i — B — B — i — L — i — - i — B — i — B — i — L — B — i — i —

DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++t+++ttttttttttt+++t++++-Comment s++++++++++
DMYPSDS

PROC_NAME
PGM_STATUS
PRV_STATUS
LINE_NUM
ROUTINE
PARMS
EXCP_TYPE
EXCP_NUM

PGM_LIB
EXCP_DATA
EXCP_ID
DATE

YEAR
LAST_FILE
FILE_INFO
JOB_NAME
USER
JOB_NUM
JOB_DATE
RUN_DATE
RUN_TIME
CRT_DATE
CRT_TIME
CPL_LEVEL
SRC_FILE
SRC_LIB
SRC_MBR
PROC_PGM
PROC_MOD

*PROC * Procedure name
*STATUS * Status code
16 20S 0 * Previous status
21 28 * Src list Tine num
*ROUTINE * Routine name
*PARMS * Num passed parms
40 42 * Exception type
43 46 * Exception number
81 90 * Program library
91 170 * Exception data
171 174 * Exception Id
191 198 * Date (*DATE fmt)
199 200S 0 * Year (*YEAR fmt)
201 208 *x Last file used
209 243 * File error info
244 253 * Job name
254 263 * User name
264 269S 0 * Job number
270 2758 0 * Date (UDATE fmt)
276 281S 0 * Run date (UDATE)
282 287S 0 * Run time (UDATE)
288 293 * Create date
294 299 * Create time
300 303 * Compiler Tevel
304 313 * Source file
314 323 * Source file 1ib
324 333 * Source file mbr
334 343 * Pgm Proc is in
344 353 * Mod Proc is in

Figure 34. Example of Coding a PSDS

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Program Exception/Error Subroutine

To identify the user-written RPG IV subroutine that is to receive control when a
program exception/error occurs, specify *PSSR in factor 1 of the subroutine's
BEGSR operation. If an indicator is not specified in positions 73 and 74 for the
operation code or if an exception occurs that is not expected for the operation code
(ie. an array indexing error during a SCAN operation), control is transferred to this
subroutine when a program exception/error occurs. In addition, the subroutine can
also be called by the EXSR operation. *PSSR can be specified on the INFSR
keyword on the file description specifications and receives control if a file
exception/error occurs.

Any of the RPG IV operation codes can be used in the program exception/error sub-
routine. The ENDSR operation must be the last specification for the subroutine,
and the factor 2 entry on the ENDSR operation specifies the return point following
the running of the subroutine. For a discussion of the valid entries for factor 2, see
“File Exception/Error Subroutine (INFSR)” on page 73.

Remember the following when specifying a program exception/error subroutine:

Chapter 5. Exception/Error Data Structures and Subroutines 83

84

ILE RPG/400 Reference

You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of
the EXSR operation.

After the ENDSR operation of the *PSSR subroutine is run, the RPG IV lan-
guage resets the field, subfield, array element, or array element specified in
factor 2 to blanks. This allows you to specify the return point within the subrou-
tine that is best suited for the running/error that occurred. If factor 2 contains
blanks at the end of the subroutine, the RPG IV default error handler receives
control; if the subroutine was called by an EXSR or CASxx operation, control
returns to the next sequential instruction following the EXSR or ENDCS.

Because the program exception/error subroutine may receive control whenever
a non-file exception/error occurs, an exception/error could occur while the sub-
routine is running. If an exception/error occurs while the subroutine is running,
the subroutine is called again; this will result in a program loop unless the pro-
grammer codes the subroutine to avoid this problem.

If you have used the OPTIMIZE(*FULL) option on either the CRTBNDRPG or
CRTRPGMOD commands, you have to declare all fields that you refer to during
exception handling with the NOOPT keyword in the definition specification for
the field. This will ensure that when you run your program, the fields referred to
during exception handling will have current values.

Primary/Secondary Multi-file Processing

Chapter 6. General File Considerations

This chapter contains a more detailed explanation of:

¢ Multi-file Processing

¢ Match fields

* Alternate collating sequence
¢ File translation.

Primary/Secondary Multi-file Processing

In an RPG IV program, the processing of a primary input file and one or more sec-
ondary input files, with or without match fields, is termed multi-file processing.
Selection of records from more than one file based on the contents of match fields
is known as multi-file processing by matching records. Multi-file processing can be
used with externally described or program described input files that are designated
as primary/secondary files.

Multi-file Processing with No Match Fields

When no match fields are used in multi-file processing, records are selected from
one file at a time. When the records from one file are all processed, the records
from the next file are selected. The files are selected in this order:

1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description
specifications.

Multi-file Processing with Match Fields

When match fields are used in multi-file processing, the program selects the
records for processing according to the contents of the match fields. At the begin-
ning of the first cycle, the program reads one record from every primary/secondary
input file and compares the match fields in the records. If the records are in
ascending order, the program selects the record with the lowest match field. If the
records are in descending order, the program selects the record with the highest
match field.

When a record is selected from a file, the program reads the next record from that
file. At the beginning of the next program cycle, the new record is compared with
the other records in the read area that are waiting for selection, and one record is
selected for processing.

Records without match fields can also be included in the files. Such records are
selected for processing before records with match fields. If two or more of the
records being compared have no match fields, selection of those records is deter-
mined by the priority of the files from which the records came. The priority of the
files is:

1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description
specifications.

When the primary file record matches one or more of the secondary records, the
MR (matching record) indicator is set on. The MR indicator is on for detail time

© Copyright IBM Corp. 1994 85

Primary/Secondary Multi-file Processing

processing of a matching record through the total time that follows the record. This
indicator can be used to condition calculation or output operations for the record
that is selected. When one of the matching records must be selected, the selection
is determined by the priority of the files from which the records came.

Figure 6 on page 22 shows the logic flow of multifile processing.

A program can be written where only one input file is defined with match fields and
no other input files have match fields. The files without the match fields are then
processed completely according to the previously mentioned priority of files. The
file with the match fields is processed last, and sequence checking occurs for that
file.

Assigning Match Field Values (M1-M9)
When assigning match field values (M1 through M9) to fields on the input specifica-
tions in positions 65 and 66, consider the following:

¢ Sequence checking is done for all record types with match field specifications.
All match fields must be in the same order, either all ascending or all
descending. The contents of the fields to which M1 through M9 are assigned
are checked for correct sequence. An error in sequence causes the RPG IV
exception/error handling routine to receive control. When the program con-
tinues processing, the next record from the same file is read.

* Not all files used in the program must have match fields. Not all record types
within one file must have match fields either. However, at least one record type
from two files must have match fields if files are ever to be matched.

¢ The same match field values must be specified for all record types that are

used in matching. See Figure 35 on page 87.

* Date, time, and timestamp match fields with the same match field values (M1
through M9) must be the same type (for example, all date) but can be different
formats.

 All character or numeric match fields with the same match field values (M1
through M9) should be the same length and type If the match field contains
packed data, the zoned decimal length (two times packed length - 1) is used as
the length of the match field. It is valid to match a packed field in one record
against a zoned decimal field in another if the digit lengths are identical. The
length must always be odd because the length of a packed field is always odd.

* Record positions of different match fields can overlap, but the total length of all
fields must not exceed 256 characters.

» If more than one match field is specified for a record type, all the fields are
combined and treated as one continuous field (see Figure 35 on page 87).
The fields are combined according to descending sequence (M9 to M1) of
matching field values.

¢ Match fields values cannot be repeated in a record.

* All match fields given the same matching field value (M1 through M9) are con-
sidered numeric if any one of the match fields is described as numeric.

* When numeric fields having decimal positions are matched, they are treated as
if they had no decimal position. For instance 3.46 is considered equal to 346.

e Only the digit portions of numeric match fields are compared. Even though a
field is negative, it is considered to be positive because the sign of the numeric
field is ignored. Therefore, a -5 matches a +5.

e Date and time fields are converted to *ISO format for comparisons

e Graphic data is compared hexadecimally

86 ILE RPG/400 Reference

Primary/Secondary Multi-file Processing

¢ Whenever more than one matching field value is used, all match fields must
match before the MR indicator is set on. For example, if match field values M1,
M2, and M3 are specified, all three fields from a primary record must match all
three match fields from a secondary record. A match on only the fields speci-
fied by M1 and M2 fields will not set the MR indicator on (see Figure 35).

» Matching fields cannot be used for lookahead fields, and arrays.

« Field names are ignored in matching record operations. Therefore, fields from
different record types that are assigned the same match level can have the
same name.

« If an alternate collating sequence or a file translation is defined for the program,
character fields are matched according to the alternate sequence specified.

* A field specified as binary (B in position 36 of the input specifications) cannot
be assigned a match field value. However, a field specified as packed (P in
position 36 of the input specifications) can be assigned a match field value.

» Match fields that have no field record relation indicator must be described
before those that do. When the field record relation indicator is used with
match fields, the field record relation indicator should be the same as a record
identifying indicator for this file, and the match fields must be grouped
according to the field record relation indicator.

* When any match value (M1 through M9) is specified for a field without a field
record relation indicator, all match values used must be specified once without
a field record relation indicator. If all match fields are not common to all
records, a dummy match field should be used. Field record relation indicators
are invalid for externally described files. (see Figure 36 on page 89).

» Match fields are independent of control level indicators (L1 through L9).

« |If multi-file processing is specified and the LR indicator is set on, the program

FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords+++++ttttttttttttttttttttt+
FMASTER IP E K DISK
FWEEKLY IS E K DISK

The files in this example are externally described (E in position 22) and are to
be processed by keys (K in position 34).

Figure 35 (Part 1 of 2). Match Fields in Which All Values Match

Chapter 6. General File Considerations 87

Primary/Secondary Multi-file Processing

88

IEMPMAS
I

I

I
IDEPTMS
I

I

I

I*
IWEEKRC
I

I

I

MASTER FILE
01

02

WEEKLY FILE
03

EMPLNO
DIVSON
DEPT

EMPLNO
DEPT
DIVSON

EMPLNO
DIVSON
DEPT

M1
M3
M2

M1
M2
M3

M1
M3
M2

Figure 35 (Part 2 of 2). Match Fields in Which All Values Match

Three files are used in matching records. All the files have three match fields spec-
ified, and all use the same values (M1, M2, M3) to indicate which fields must
match. The MR indicator is set on only if all three match fields in either of the files
EMPMAS and DEPTMS are the same as all three fields from the WEEKRC file.

The three match fields in each file are combined and treated as one match field
organized in the following descending sequence:

DIVSON

DEPT
EMPLNO

The order in which the match fields are specified in the input specifications does
not affect the organization of the match fields.

ILE RPG/400 Reference

Primary/Secondary Multi-file Processing

IDISK AB 01
I OR 02
I OR 03
I
I
I
I

S DA Y’ SV DU . S SN - DD, Ry
IFiTename++SqNOR1Pos1+NCCPOS2+NCCPOS3+NCC. v vvi it ii it iiiiiineieaeenns
...... Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
1C1
1 C2
1C3
1 10 OEMPNO M1
11 15 oDUMMY M2
11 15 ODEPT M202
16 20 ODEPT M203

Figure 36 (Part 1 of 2).

Match Fields with Dummy Match Field

m=
=
o

NO

—
N
w
m =
=z
($2]
o

Record Identifying Indicator 01
6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

M2
N O DEPT

—
N
w
m= -~
==
($a)
-

Record Identifying Indicator 02
6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
M2
DE

NO PT

1 2 3 45

Record Identifying Indicator 0
6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

Figure 36 (Part 2 of 2).

Match Fields with a Dummy M2 Field

Three different record types are found in the input file. All three contain a maich
field in positions 1 through 10. Two of them have a second match field. Because
M1 is found on all record types, it can be specified without a field record relation
entry in positions 67 and 68. If one match value (M1 through M9) is specified
without field record relation entries, all match values must be specified once without
field record relation entries. Because the value M1 is specified without field record
relationship, an M2 value must also be specified once without field record relation-
ship. The M2 field is not on all record types; therefore a dummy M2 field must be
specified next. The dummy field can be given any unique name, but its specified
length must be equal to the length of the true M2 field. The M2 field is then related
to the record types on which it is found by field record relation entries.

Chapter 6. General File Considerations 89

Primary/Secondary Multi-file Processing

NP [P S . TP STTTPIY JUMAE S DRI UPP - DUPIE JUPPRY
FFilename++IPEASFRTen+LKTen+AIDevice+.Keywords++++++tttttttttttttttttttttt
FPRIMARY IPEA F 64 DISK

FFIRSTSEC IS A F 64 DISK

FSECSEC ISAF 64 DISK

2N I USRI S PUNPIS U SO SN . JRR S DU SOy S
IFiTename++SGNORTPOSI+NCCPOS2+NCCPOS3HNCC. o vt e n i ee e ieneieneenennnennns
ettt i it ineenenn Fmt+SPFrom+To+++DcField+++++++++L1IM1FrP1MnZr. ...
IPRIMARY AA 01 1cp 2NC

I 2 3 MATCH M1

I*

I BB 02 1c¢Cp 2¢C

I 2 3 NOM

I*

IFIRSTSEC AB 03 1CS 2NC

I 2 3 MATCH M1

I*

I BC 04 1¢CS 2C

I 2 3 NOM

I*

ISECSEC AC 05 1CT 2NC

I 2 3 MATCH M1

I*

I BD 06 1CT 2¢C

I 2 3 NOM

Figure 37. Match Field Specifications for Three Disk Files

Matching records for two or more files are processed in the following manner:

* Whenever a record from the primary file matches a record from the secondary
file, the primary file is processed first. Then the matching secondary file is proc-
essed. The record identifying indicator that identifies the record type just
selected is on at the time the record is processed. This indicator is often used
to control the type of processing that takes place.

* Whenever records from ascending files do not match, the record having the
lowest match field content is processed first. Whenever records from
descending files do not match, the record having the highest match field
content is processed first.

* A record type that has no match field specification is processed immediately
after the record it follows. The MR indicator is off. If this record type is first in
the file, it is processed first even if it is not in the primary file.

* The matching of records makes it possible to enter data from primary records
into their matching secondary records because the primary record is processed
before the matching secondary record. However, the transfer of data from sec-
ondary records to matching primary records can be done only when look-ahead
fields are specified.

Figure 38 through Figure 39 show how records from three files are selected for
processing.

90 ILE RPG/400 Reference

Primary/Secondary Multi-file Processing

Primary File

First Secondary File

Second Secondary File

P{P|P|P|P|P|[P|P]P
20| 20| 40| 50 60| 80
1 2 5 6 11 12 13 17 22
No Match Field
S|IS|S|S|S|S|S|S]|S
20| 30| 30| 60 70| 80| 80
3 7 8 9 18 19 21 23 24
Match Field
T|T|T|T|T|T|T|T
10| 30| 50| 50 60| 80| 80
4 10 14 15 16 20 25 26
The records from the three disk files above are selected in the
order indicated by the dark numbers.

Figure 38. Normal Record Selection from Three Disk Files

Table 8 (Page 1 of 2). Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

1 PRIMARY 02 No match field specified

2 PRIMARY 02 No match field specified

3 FIRSTSEC 04 No match field specified

4 SECSEC 05 Second secondary low; no primary match
5 PRIMARY 01, MR Primary matches first secondary

6 PRIMARY 01, MR Primary matches first secondary

7 FIRSTSEC 03, MR First secondary matches primary

8 FIRSTSEC 03 First secondary low; no primary match
9 FIRSTSEC 03 First secondary low; no primary match
10 SECSEC 05 Second secondary low; no primary match
11 PRIMARY 01 Primary low; no secondary match

12 PRIMARY 01, MR Primary matches second secondary
13 PRIMARY 02 No match field specified

14 SECSEC 05, MR Second secondary matches primary
15 SECSEC 05, MR Second secondary matches primary
16 SECSEC 06 No match field specified

17 PRIMARY 01, MR Primary matches both secondary files
18 FIRSTSEC 03, MR First secondary matches primary

19 FIRSTSEC 04 No match field specified

20 SECSEC 05, MR Second secondary matches primary
21 FIRSTSEC 03 First secondary low; no primary match

Chapter 6. General File Considerations

91

Primary/Secondary Multi-file Processing

P S T 10

Table 8 (Page 2 of 2). Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

22 PRIMARY 01, MR Primary matches both secondary files

23 FIRSTSEC 03, MR First secondary matches primary

24 FIRSTSEC 02, MR First secondary matches primary

25 SECSEC 05, MR Second secondary matches primary

26 SECSEC 05, MR Second secondary matches primary
STEP 1

The first record from each file
is read. The P and S records
have no match field, so they are
processed before the T record
that has a match field. Because
the P record comes from the
primary file, it is selected for
processing first.

STEP 2

The next P record is read. It
contains no match field and comes
from the primary file, so the new
P record is also selected for
processing before the S record.

STEP 3

P 20 S T 10

The next P record has a match
field. The S record has no match
field, so it is selected for
processing.

STEP 4

The next S record is read. All
three records have match fields.
Because the value in the match

P 20 S 20 T 30

P 20 S 20 T 10 field of the T record is Tower
than the value in the other two,
the T record is selected for pro-
cessing.

STEP 5

The next T record is read. The
matching P and S records both
have the low match field value,
so they are processed before the
T record. Because the matching

P record comes from the primary
file, it is selected for process-
ing first.

Figure 39 (Part 1 of 2). Normal Record Selection from Three Disk Files

92 ILE RPG/400 Reference

Alternate Collating Sequence

STEP 6
The next P record is read.
Because it contains the same
match field and comes from the

P 20 S 20 T 30 primary file, the new P record

is selected instead of the
S record.

STEP 7

The next P record is read. The
value of the match field in the

S record is the lowest of the

P 40 S 20 T 30 three, so the S record is select-
ed for processing.

STEP 8 The next S record is read.
Because the S and T records have
the Towest match field, they are
selected before the P record.

P 40 S 30 T 30 Because the S record comes from
the first secondary file, it is
selected for processing before
the T record.

STEP 9

The next S record is read.
Because it also has the same
match field as the S record just
P 40 S 30 T 30 selected, it too is selected
before the T record.

STEP 10
l The next S record is read. The
T record contains the Towest
P 40 S 60 T 30 match field value, and is select-

ed for processing.

Figure 39 (Part 2 of 2). Normal Record Selection from Three Disk Files

Alternate Collating Sequence

Each character is represented internally by a hexadecimal value, which governs the
order (ascending or descending sequence) of the characters and is known as the
normal collating sequence. The alternate collating sequence function can be used
to alter the normal collating sequence. This function also can be used to allow two
or more characters to be considered equal.

Chapter 6. General File Considerations 93

Specifying an Alternate Collating Sequence in Your Source

Changing the Collating Sequence

Using an alternate collating sequence means modifying the collating sequence for
character match fields (file selection) and character compares. You specify that an
alternate collating sequence will be used by specifying the ALTSEQ keyword on the
control specification. The calculation operations affected by the alternate collating
sequence are ANDxx, COMP, CABxx, CASxx, DOU, DOUxx, DOW, DOWxXx, IF,
IFxx, ORxx, and WHENxx. This does not apply to graphic compare operations.
LOOKUP and SORTA are affected only if you specify ALTSEQ(*EXT). The charac-
ters are not permanently changed by the alternate collating sequence, but are tem-
porarily altered until the matching field or character compare operation is
completed.

Changing the collating sequence does not affect the LOOKUP and SORTA oper-
ations (unless you specify ALTSEQ(*EXT)) or the hexadecimal values assigned to
the figurative constants *HIVAL and *LOVAL. However, changing the collating
sequence can affect the order of the values of *HIVAL and *LOVAL in the collating
sequence. Therefore, if you specify an alternate collating sequence in your
program and thereby cause a change in the order of the values of *HIVAL and
*LOVAL, undesirable results may occur.

Using an External Collating Sequence

To specify that the values in the SRTSEQ and LANGID command parameters
should be used to determine the alternate collating sequence, specify
ALTSEQ(*EXT) on the control specificiation. For example, if ALTSEQ(*EXT) is
used, and the CRTBNDRPG command specified SRTSEQ(*LANGIDSHR)
LANGID(*JOBRUN), then when the program is run, the shared-weight table for the
user running the program will be used as the alternate collating sequence.

Since the LOOKUP and SORTA operations are affected by the alternate collating
sequence when ALTSEQ(*EXT) is specified, character compile-time arrays and
tables are sequence-checked using the alternate collating sequence. If the actual
collating sequence is not known until runtime, the array and table sequence cannot
be checked until runtime. This means that you could get a runtime error saying
that a compile-time array or table is out of sequence.

Pre-run arrays and tables are also sequence-checked using the alternate collating
sequence when ALTSEQ(*EXT) is specified.

Specifying an Alternate Collating Sequence in Your Source

94

To specify that an alternate collating sequence is to be used, use the
ALTSRC(*SRC) keyword on the control specification. If you use the **ALTSEQ,
*CTDATA, and *FTRANS keywords, the sequence data may be entered in any
sequence following the source records. If you do not use those keywords, the
sequence data must follow the source records, and the file translation records but
precede any compile-time array data.

If a character is to be inserted between two consecutive characters, you must
specify every character that is altered by this insertion. For example, if the dollar
sign ($) is to be inserted between A and B, specify the changes for character B
onward.

See Appendix B, “EBCDIC Collating Sequence” on page 501 for the EBCDIC char-
acter set.

ILE RPG/400 Reference

File Translation

Formatting the Alternate Collating Sequence Records
The changes to the collating sequence must be transcribed into the correct record
format so that they can be entered into the system. The alternate collating
sequence must be formatted as follows:

Record

Position Entry

1-6 ALTSEQ (This indicates to the system that the normal sequence is
being altered.)

7-10 Leave these positions blank.

11-12 Enter the hexadecimal value for the character whose normal
sequence is being changed.

13-14 Enter the hexadecimal value of the character replacing the char-
acter whose normal sequence is being changed.

15-18 All groups of four beginning with position 15 are used in the same

19-22 manner as positions 11 through 14. In the first two positions of a

23-26 group enter the hexadecimal value of the character to be replaced.

In the last two positions enter the hexadecimal value of the char-

77-80 acter that replaces it.

The records that describe the alternate collating sequence must be preceded by a
record with **b (b = blank) in positions 1 through 3. The remaining positions in this
record can be used for comments.

File Translation

The file translation function translates any of the 8-bit codes used for characters
into another 8-bit code. The use of file translation indicates one or both of the
following:

¢ A character code used in the input data must be translated into the system
code.

e The output data must be translated from the system code into a different code.
The translation on input data occurs before any field selection has taken place.
The translation on output data occurs after any editing taken place.

Remember the following when specifying file translation:

* File translation can be specified for data in array or table files (T in position 18
of the file description specifications).

» File translation can be used with data in combined, input, or update files that
are translated at input and output time according to the file translation table
provided. If file translation is used to translate data in an update file, each
record must be written before the next record is read.

* For any 1/O operation that specifies a search argument in factor 1 (such as
CHAIN, READE, READPE, SETGT, or SETLL) for files accessed by keys, the
search argument is translated before the file is accessed.

* [f file translation is specified for both a record address file and the file being
processed (if the file being processed is processed sequentially within limits),
the records in the record address file are first translated according to the file
translation specified for that file, and then the records in the file being proc-
essed are translated according to the file translation specified for that file.

* File translation applies only on a single byte basis.

Chapter 6. General File Considerations 95

File Translation

e Every byte in the input and output record is translated

Specifying File Translation

To specify file translation, use the “FTRANS{(*NONE *SRC)}" keyword on the
control specification. The translations must be transcribed into the correct record
format for entry into the system. These records, called the file translation table
records, must precede any alternate collating sequence records, or arrays and
tables loaded at compile time. They must be preceded by a record with **h (b =
blank) in positions 1 through 3 or *FTRANS in positions 1 through 8. The
remaining positions in this record can be used for comments.

Translating One File or All Files

File translation table records must be formatted as follows:

Record

Position Entry

1-8 (to Enter *FILESbY (b represents a blank) to indicate that all files are to

translate be translated. Complete the file translation table record beginning

all files) with positions 11 and 12. If *FILESbHb is specified, no other file
translation table can be specified in the program.

1-8 (to Enter the name of the file to be translated. Complete the file trans-

translate a lation table record beginning with positions 11 and 12. The

specific file) *FILESbHb entry is not made in positions 1 through 8 when a specific
file is to be translated.

9-10 Blank

1112 Enter the hexadecimal value of the character to be translated from
on input or to be translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the RPG
IV language works with. It will replace the character in positions 11
and 12 on input and be replaced by the character in positions 11
and 12 on output.

15-18 All groups of four beginning with position 15 are used in the same
19-22 manner as positions 11 through 14. In the first two positions of a
23-26 group, enter the hexadecimal value of the character to be replaced.
In the last two positions, enter the hexadecimal value of the char-
77-80 acter that replaces it.

The first blank entry ends the record. There can be one or more records per file

- translation table. When multiple records are required in order to define the table,

the same file name must be entered on all records. A change in file name is used
to separate multiple translation tables. An *FILES record causes all files, including
tables and arrays specified by a T in position 18 of the file description specifica-
tions, to be translated by the same table.

Translating More Than One File

96

If the same file translation table is needed for more than one file but not for all files,
two types of records must be specified. The first record type specifies the file using
the tables, and the second record type specifies the table. More than one record
for each of these record types can be specified. A change in file names is used to
separate multiple translation tables.

ILE RPG/400 Reference

File Translation

HKeyWords++++++t+ttttrttttttttttttttttt bttt bttt bbb bbb
H* In this example all the files are translated
H FTRANS
FFilename++IPEASFR1en+LK1en+AIDevicet.Keywords++++++ttttttttttttttt
FFILE1l IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS

*FILES 81C182C283(C384C4

HKeywor‘dSIH:IHIHHI:H:HHHH:H:HHH:IHHIHH:HHHHHI
Hx In this example different translate tables are used and
H* FILE3 is not translated.

H FTRANS
FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords+++++t+t+ttttttttitttt
FFILE1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS

FILE1l 8182

FILE2 c1c2

FILE4 81C182C283C384C4

Specifying the Files
File translation table records must be formatted as follows:

Record

Position Entry

1-7 *EQUATE

8-10 Leave these positions blank.

11-80 Enter the name(s) of file(s) to be translated. If more than
one file is to be translated, the file names must be separated
by commas.

Additional file names are associated with the table until a file name not followed by
a comma is encountered. A file name cannot be split between two records; a
comma following a file name must be on the same record as the file name. You
can create only one file translation table by using *EQUATE.

Specifying the Table

File translation table records must be formatted as follows:

Record
Position Entry
1-7 *EQUATE

Chapter 6. General File Considerations 97

File Translation

98

Record

Position Entry

8-10 Leave these positions blank.

11-12 Enter the hexadecimal value of the character to be translated
from on input or to be translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the
RPG IV language works with. It will replace the character in
positions 11 and 12 on input and be replaced by the char-
acter in positions 11 and 12 on output.

15-18 All groups of four beginning with position 15 are used the

19-22 same way as positions 11 through 14. In the first two posi-

23-26 tions of a group, enter the hexadecimal value of the character

to be replaced. In the last two positions, enter the

77-80 hexadecimal value of the character that replaces it.

The first blank record position ends the record. If the number of entries exceeds 80
positions, duplicate positions 1 through 10 on the next record and continue as
before with the translation pairs in positions 11 through 80. All table records for

one file must be kept together.

The records that describe the file translation tables must be preceded by a record
with **b (b = blank) in positions 1 through 3 or with *FTRANS. The remaining

positions in this record can be used for comments.

*EQUATE

HKeywor‘ds+%+‘.HHHHHHHHH:l:HHHH:HHHHHHHHHHHH

Hx In this example several files are translated with the
H+* same translation table. FILE2 is not translated.
H FTRANS

FFilename++IPEASFRTen+LK1en+AIDevice+. Keywords++++++tttttttttttttstt

FFILE1 IP F 10 DISK

FFILE2 IS F 10 DISK

FFILE3 IS F 10 DISK

FFILE4 IS F 10 DISK
**FTRANS

*EQUATE FILE1,FILE3,FILE4
81C182(€283(384C485C586C687C788C889CIBACASBCB8CCCSDCDBECESF
*EQUATE 91D192D2

ILE RPG/400 Reference

Data

This section provides information on the various aspects of RPG IV data. It
describes:

¢ Data types and data formats
¢ Literals and named constants
¢ Data structures

e Arrays and tables

¢ Editing numeric fields

¢ Data initialization

Also included is information on default values, *HIVAL, and *LOVAL.

© Copyright IBM Corp. 1994 99

100 ILE RPG/400 Reference

Chapter 7. Data Types and Data Formats

This chapter describes the data types supported by RPG IV and their special char-

acteristics. The supported data types are

¢ Character

¢ Numeric

¢ Graphic

¢ Date

e Time

¢ Timestamp

* Basing Pointer

¢ Procedure Pointer

Character Data

Type
Character data may be one or more bytes in length. Operation codes which
operate on strings accept character data.

The default initialization value for nonindicator character fields is blanks.

Indicators are a special type of character data. Indicator data consists of the RPG
IV indicators and the field specified with the COMMIT keyword on the file
description specification. Indicators are all one byte long and can only contain the
character values '0' and '1'. The default value of indicators is '0'.

Numeric Data Type

Numeric data consists of any data defined as having zero or.more decimal posi-
tions. The default initialization value for numeric fields is zeroes. Numeric data has
three possible formats: zoned-decimal, packed-decimal, and binary.

Packed-Decimal Format

Packed-decimal format means that each byte of storage (except for the low order
byte) can contain two decimal numbers. The low-order byte contains one digit in
the leftmost portion and the sign (positive or negative) in the rightmost portion. The
standard signs are used: hexadecimal F for positive numbers and hexadecimal D
for negative numbers. The packed-decimal format looks like this:

00— 7 00— 7

© Copyright IBM Corp. 1994

Digit ! Digit Digit ! Sign
| |

Byte
The sign portion of the low-order byte indicates whether the numeric value repres-
ented in the digit portions is positive or negative. Figure 40 on page 105 shows
what the decimal number 8191 looks like in packed-decimal format.

For a program-described file, you specify packed-decimal input, output, and array
or table fields with the following entries:

Packed-decimal input field: Specify P in position 36 of the input specifications.

101

Packed-decimal output field: Specify P in position 52 of the output specifica-
tions. This position must be blank if editing is specified.

Packed-decimal array or table field: Specify P in position 40 of the definition
specifications. The external format for compile-time arrays and tables cannot be
packed-decimal format.

For an externally described file, the data format is specified in the data description
specifications.

Determining the Digit Length of a Packed-Decimal Field

102

Use the following formula to find the length in digits of a packed-decimal field:

Number of digits = 2n - 1,

...where n = number of packed input record positions used.

This formula gives you the maximum number of digits you can represent in packed-
decimal format; the upper limit is 30.

Packed fields can be up to 16 bytes long. Table 9 shows the packed equivalents
for zoned-decimal fields up to 30 digits long:

Table 9. Packed Equivalents for Zoned-Decimal
Fields up to 30 Digits Long

Zoned-Decimal Number of Bytes
Length in Digits Used in Packed-
Decimal Field

1 1

2,3 2
4,5 3
28, 29 15
30, 31 16

Note: Only 30 digits are allowed. If you use positional notation for 16-byte packed
fields, you must use the PACKEVEN keyword or otherwise define the field as
having 30 digits.

For example, an input field read in packed-decimal format has a length of five bytes
(as specified on the input or data description specifications). The number of digits
in this field equals 2(5) - 1 or 9. Therefore, when the field is used in the calcu-
lation specifications, the result field must be nine positions long. The “PACKEVEN”
keyword on the definition specification can be used to indicate which of the two
possible sizes you want when you specify a packed field using from and to posi-
tions rather than number of digits.

ILE RPG/400 Reference

Zoned-Decimal Format
Zoned-decimal format means that each byte of storage can contain one digit or one
character. In the zoned-decimal format, each byte of storage is divided into two
portions: a 4-bit zone portion and a 4-bit digit portion. The zoned-decimal format
looks like this:

0O — 70— 70 —B 70 —B 70— 7
I il I | I
Zone Digit | Zone Digit | Zone Digit | Zone Digit | Zone Digit
| I | | |
——— _cm—
Byte *

1101 = Minus sign (hex D)
1111 = Plus sign (hex F)

The zone portion of the low-order byte indicates the sign (positive or negative) of
the decimal number. The standard signs are used: hexadecimal F for positive
numbers and hexadecimal D for negative numbers. In zoned-decimal format, each
digit in a decimal number includes a zone portion; however, only the low-order zone
portion serves as the sign. Figure 40 on page 105 shows what the number 8191
looks like in zoned-decimal format.

You must consider the change in field length when coding the end position in posi-
tions 40 through 43 of the output specifications and the field is to be output in
packed format. To find the length of the field after it has been packed, use the
following formula:

Field length =

S
-+
=y

...where n = number of digits in the zoned decimal field.

(Any remainder from the division is ignored.)

For a program-described file, zoned-decimal format is specified by a blank in posi-
tion 36 of the input specifications, in position 52 of the output specifications, or in
position 40 of the definition specifications. For an externally described file, the data
format is specified in position 35 of the data description specifications.

You can specify an alternative sign format for zoned-decimal format. In the alterna-
tive sign format, the numeric field is immediately preceded or followed by a + or -
sign. A plus sign is a hexadecimal 4E, and a minus sign is a hexadecimal 60.

When an alternative sign format is specified, the field length (specified on the input
specification) must include an additional position for the sign. For example, if a
field is 5 digits long and the alternative sign format is specified, a field length of 6
positions must be specified.

Chapter 7. Data Types and Data Formats 103

Binary Format

Binary format means that the sign (positive or negative) is in the leftmost bit of the
field and the integer value is in the remaining bits of the field. Positive numbers
have a zero in the sign bit; negative numbers have a one in the sign bit and are in
twos complement form. In binary format, each field must be either 2 or 4 bytes

long.

Program-Described File

Every input field read in binary format is assigned a field length (number of digits)
by the compiler. A length of 4 is assigned to a 2-byte binary field; a length of 9 is
assigned to a 4-byte binary field, if the field is not defined elsewhere in the
program. Because of these length restrictions, the highest decimal value that can
be assigned to a 2-byte binary field is 9999 and the highest decimal value that can
be assigned to a 4-byte binary field is 999 999 999. In general, a binary field of n
digits can have a maximum value of n 9s. This discussion assumes zero decimal
positions.

For program-described files, specify binary input, binary output, and binary array or
table fields with the following entries:

e Binary input field: Specify B in position 36 of the input specifications.

e Binary output field: Specify B in position 52 of the output specifications. This
position must be blank if editing is specified.

The length of a field to be written in binary format cannot exceed nine digits. If
the length of the field is from one to four digits, the compiler assumes a binary
field length of 2 bytes. If the length of the field is from five to nine digits, the
compiler assumes a binary field length of 4 bytes.

Because a 2-byte field in binary format is converted by the compiler to a
decimal field with 1 to 4 digits, the input value may be too large. If it is, the
leftmost digit of the number is dropped. For example, if a four digit binary input
field has a binary value of hexadecimal 6000. The compiler converts this to 24
576 in decimal. The 2 is dropped and the result is 4576.

e Binary array or table field: Specify B in position 40 of the definition specifica-
tions. The external format for compile-time arrays and tables must not be
binary. format.

Externally Described File

For an externally-described file, the data format is specified in position 35 of the
data description specifications. The number of digits in the field is exactly the same
as the length in the DDS description. For example, if you define a binary field in
your DDS specification as having 7 digits and 0 decimal positions, the RPG IV
compiler handles the data like this:

1. The field is defined as a 4-byte binary field in the input specification
2. A Packed(7,0) field is generated for the field in the RPG IV program.

If you want to retain the complete binary field information, redefine the field as a
binary subfield in a data structure or as a binary stand-alone field.

Figure 40 on page 105 shows what the decimal number 8191 looks like in various
formats.

104 ILE RPG/400 Reference

Packed Decimal Format:

Positive Sign

0 8 1 9 1 *

I I |
0000 1000|0001 1001|0001 1111
l | |

-}—— 3 bytes ——

Zoned Decimal Format: °

Zone Zone Zone Zone Paositive Sign

L Tttt

I I
1111 0000 (1111 1000|1111 00011111 1001|1111 0001
| ! l L l

- 5 bytes P

Binary Format: ?

Positvesign | | [| | [[| | | | | |
l 4096 +2048+1024+ 512+ 256+128+ 64+ 32 +16 + 8 +4 +2 4 &1 9
v I R N e e e e e
| [
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
| |
- 2 bytes I

1 If 8191 is read into storage as a zoned-decimal field, it occupies 4 bytes. If it is converted to
packed-decimal format, it occupies 3 bytes. When it is converted back to zoned-decimal format, it
occupies 5 bytes.

2 To obtain the numeric value of a positive binary number add the values of the bits that are on (1),
do not include the sign bit. To obtain the numeric value of a negative binary number, add the values
of the bits that are off (0) plus one (the sign bit is not included).

Figure 40. Binary, Packed, and Zoned-Decimal Representation of the Number 8191

Date Data

Date fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all date data.

Date constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Also dates used for I/O operations
such as input fields, output fields or key fields are also converted (if required) to the
necessary format for the operation..

Chapter 7. Data Types and Data Formats 105

The default internal format for date variables is *ISO. This default internal format
can be overridden globally by the control specification keyword DATFMT and indi-
vidually by the definition specification keyword DATFMT.

The hierarchy used when determining the internal date format and separator for a
date field is

1. From the DATFMT keyword specified on the definition specification
2. From the DATFMT keyword specified on the control specification
3. *ISO

There are two kinds of date data formats, 2-digit year formats and 4-digit year. For
2-digit year formats, years in the range 1940 to 2039 can be represented. This
leads to the possibility of a date overflow condition occurring when converting from

a 4-digit year format to a 2-digit year format.

The following table lists the formats for date data.

Table 10. Date formats for Date data type

Format Description Format Length Example
name

*MDY Month/Day/Year mm/dd/yy 8 01/15/91
*DMY Day/Month/Year dd/mm/yy 8 15/01/91
*YMD Year/Month/Day yy/mm/dd 8 91/01/15
*JUL Julian yy/ddd 6 91/015
*SO International Standards Organization yyyy-mm-dd 10 1991-01-15
*USA IBM USA Standard mm/dd/yyyy 10 01/15/1991
*EUR IBM European Standard dd.mm.yyyy 10 15.01.1991
*JIS Japanese Industrial Standard Christian Era yyyy-mm-dd 10 1991-01-15

The following table lists the *LOVAL, *HIVAL, and default values for all the date

formats.

Table 11. Date Values

Format Description *LOVAL *HIVAL Default
name Value
*MDY Month/Day/Year 01/01/40 12/31/39 01/01/01
*DMY Day/Month/Year 01/01/40 31/12/39 01/01/01
*YMD Year/Month/Day 40/01/01 39/12/31 01/01/01
*JUL Julian 40/001 39/365 01/001
*SO International Standards Organization 0001-01-01 9999-12-31 0001-01-01
*USA IBM USA Standard 01/01/0001 12/31/9999 01/01/0001
*EUR IBM European Standard 01.01.0001 31.12.9999 01.01.0001
*JIS Japanese Industrial Standard Christian Era 0001-01-01 9999-12-31 0001-01-01

106 ILE RPG/400 Reference

Time Data

Time fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all time data.

Time constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Also, times used for I/0 oper-
ations such as input fields, output fields or key fields are also converted (if required)

to the necessary format for the operation.

The default internal format for time variables is *ISO. This default internal format
can be overridden globally by the control specification keyword TIMFMT and indi-

vidually by the definition specification keyword TIMFMT.

The hierarchy used when determining the internal time format and separator for a

time field is

1. From the TIMFMT keyword specified on the definition specification

2. From the TIMFMT keyword specified on the control specification

3. *ISO

The following table lists the formats for time data.

Table 12. Time formats for Time data type

Format Description Format Length| Example
name

*HMS Hours:Minutes:Seconds hh:mm:ss 8 14:00:00
*SO International Standards Organization hh.mm.ss 8 14.00.00
*USA IBM USA Standard. AM and PM can be any mix hh:mm AM or 8 02:00 PM

of upper and lower case. hh:mm PM

*EUR IBM European Standard hh.mm.ss 8 14.00.00
*JIS Japanese Industrial Standard Christian Era hh:mm:ss 8 14:00:00

The following table lists the *LOVAL, *HIVAL, and default values for all the date

formats.

Table 13. Time Values

Format Description *LOVAL *HIVAL Defaulit
name Value
*HMS Hours:Minutes:Seconds 00:00:00 24:00:00 00:00:00
*SO International Standards Organization 00.00.00 24.00.00 00.00.00
*USA IBM USA Standard. AM and PM can be any 00:00 AM 12:00 AM 00:00 AM
mix of upper and lower case.

*EUR IBM European Standard 00.00.00 24.00.00 00.00.00
*JIS Japanese Industrial Standard Christian Era 00:00:00 24:00:00 00:00:00

Chapter 7. Data Types and Data Formats

107

Timestamp Data

Timestamp fields have a predetermined size and format. They can be defined on
the definition specification. Timestamp data must be in the format

yyyy-mm-dd-hh.mm.ss.mmmmmm (length 26).

Microseconds (.mmmmmm) are optional for timestamp literals and if not provided
will be padded on the right with zeroes. Leading zeros are required for all
timestamp data.

The default initialization value for a timestamp is midnight of January 1, 0001
(0001-01-01-00.00.00.000000). The *HIVAL value for a timestamp is
9999-12-31-24.00.00.000000. Similarly, the *LOVAL value for timestamp is
0001-01-01-00.00.00.00000.

Graphic Data Type

108

The graphic data type is a character string where each character is represented by
2 bytes. Fields defined as graphic data do not contain shift-out (SO) or shift-in (Sl)
characters. The default initialization value for graphic data is X'4040'. The value
of *HIVAL is X'FFFF' and the value of *LOVAL is X'0000' The difference between
single byte and graphic data is shown in the following figure:

1 byte | 1 byte | 1 byte | 1 byte Single-byte
data

1 char 1 char 1 char 1 char

1 byte | 1 byte | 1 byte | 1 byte graphic
data

1 graphic 1 graphic
Figure 41. Comparing Single-byte and graphic data

The length of a graphic field, in bytes, is two times the number of graphic charac-
ters in the field.

If you add a record to the database file and graphic fields are not specified for
output, the ILE RPG/400 compiler will place double-byte blanks in the fields for
output. The following conditions will result in blanks being placed in your output
fields:

» The fields are not specified for output on the output specification.

e Conditioning indicators are not satisfied for the field.

ILE RPG/400 Reference

Basing Pointer Data Type

Basing pointers are used to point to data in storage. The storage is accessed by
defining a field as based on a particular basing pointer variable and setting the
basing pointer field to point to the required storage location. Basing pointers can
be defined on the definition specification with the “BASED (basing_pointer_name)”
keyword.

The length of the basing pointer field must be 16 bytes long and must be aligned
on a 16 byte boundary. This requirement for boundary alignment can cause a
pointer subfield of a data structure not to follow the preceding field directly, and can
cause multiple occurrence data structures to have noncontiguous occurrences. The
default initialization value for basing pointers is *NULL.

Examples

L O A R R LT TP O - S, Y A P
DName+++++++++++ETDsFrom+++To/ L+++1Dc. Keywords+++++++++ttttttttttttttrtttt
*

* Define a based data structure, array and field.
* If PTR1 is not defined, it will be implicitly defined
* by the compiler.
*
* Note that before these based fields or structures can be used,
* the basing pointer must be set to point to the correct storage
* Tocation.
*
D DSbased DS BASED(PTR1)
D Fieldl 1 16A
D Field2 : 2
D
D ARRAY S 20A DIM(12) BASED(PRT2)
D
D Temp_f1d S * BASED(PRT3)
D
D PTR2 * INZ
D PTR3 * INZ(*NULL)

Figure 42. Defining based structures and fields

Chapter 7. Data Types and Data Formats 109

110

Figure 43 illustrates the use of pointers, based structures and system APIs. This
program does the following:

. Receives the Library and File name you wish to process

. Creates a User space using the QUSCRTUS API

. Calls an API (QUSLMBR) to list the members in the requested file
. Gets a pointer to the User space using the QUSPTRUS API

a Hh 0O N =

. Displays a message with the number of members and the name of the first and
last member in the file

LT U A T R SR N P RS S A T AU O
DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords+++++++++t+tttttttttttttttttt
Dt i it i i Keywords++++++++++t++tttttttt+tt++++

D NAME S 20 INZ('LISTSPACE YOURLIB ')
D ATTRIBUTE) 10 INZ('ABC')
D INIT_SIZE S 9B 0 INZ(9999999)
D AUTHORITY S 10 INZ (' *CHANGE')
D TEXT S 50 INZ('File member space')
D SPACE DS BASED(PTR)

D SP1 32767

*

* ARR is used with OFFSET to set the pointer to array

*

D ARR 1 OVERLAY (SP1) DIM(32767)

*

* Offset is pointing to start of array
*

D OFFSET 9B 0 OVERLAY(SP1:125)
*

* Size has number of member names retrieved
*

D SIZE 9B 6 OVERLAY(SP1:133)

D MBRPTR S *

D MBRARR S 10 BASED (MBRPTR) DIM(32767)
D PTR S *

D LIB_FILE S 20

D LIB S 10

D FILE S 10

D WHAT S 10 INZ('*ALL ')

D X S 7 0 INZ(1)

D OVERRIDE S 1 INZ('1")

D FIRST_LAST S 50 INZ(' members, +
D First = , T
D Last =)

Figure 43 (Part 1 of 2). Example of using pointers and based structures with an AP/

ILE RPG/400 Reference

LTI T S

*

*

c *ENTRY PLIST
c PARM
C PARM
C EVAL

*

* Create the user space

*
CALL
PARM
PARM
PARM
PARM
PARM
PARM

OOOOOOO

*

*

CALL
PARM
PARM
PARM
PARM
PARM

OO0

*

*

C CALL
c PARM
c PARM

*

*

EVAL
Move
EVAL
EVAL
EVAL
DSPLY
EVAL

FIRST_LAST

OOOOOOO

KIS Y N TN TR DA s SR U A SR -
CLONO1Factorl+++++++Opcode (E)+Factor2+++++++Resul t++++++++Len++D+HiLoEqg. . ..
CLONO1++++++++++++++0pcode (E) +Extended Factor 2+++++++ttttttttttttttttitttt

* Receive Library and file you want to process

LIB
FILE
LIB_FILE = LIB + FILE

'QUSCRTUS' 99
NAME
ATTRIBUTE
INIT_SIZE
v INIT_VALUE 1
AUTHORITY
TEXT

* CA11 the API to list the members in the requested file

' QUSLMBR'

NAME

MBR_LIST 8
LIB_FILE

WHAT

OVERRIDE

'MBRLO160'

* Get a pointer to the user-space

'QUSPTRUS'
NAME
PTR

* Set the basing pointer for the member array

MBRPTR = %ADDR(ARR(OFFSET))

size charsize 3
%Subst(First_Last:1:3) = charsize
%subst(First_last:23:10) = mbrarr(1)
%subst(First_last:41:10) = mbrarr(size)

*INLR = '1'

Figure 43 (Part 2 of 2). Example of using pointers and based structures with an API

Chapter 7. Data Types and Data Formats

111

Procedure Pointer Data Type

112

Procedure pointers are used to point to procedures or functions. A procedure
pointer points to an entry point that is bound into the program. Procedure pointers
are defined on the definition specification.

The length of the procedure pointer field must be 16 bytes long and must be
aligned on a 16 byte boundary. This requirement for boundary alignment can
cause a pointer subfield of a data structure not to follow the preceding field directly,
and can cause multiple occurrence data structures to have noncontiguous occur-
rences. The default initialization value for procedure pointers is *NULL.

Examples

DName+++++++++++ETDsFrom+++To/L+++IDC. Keywords+++++++ttttttttttttttttttt++
*
* Define a basing pointer field and initialize to the address of the

* data structure My_Struct.
*

D My_struct DS

D My array 10 DIM(50)

D

D Ptrl S 16 INZ(%ADDR(My_Struct))

*

* Or equivalently, defaults to length 16 if length not defined

*
D Ptrl S * INZ(%ADDR(My_Struct))

: Define a procedure pointer field and initialize to NULL
D*Ptrl S 16* PROCPTR INZ(*NULL)

: Define a procedure pointer field and initialize to the address

* of the procedure My Proc.
*

D Ptrl S 16* PROCPTR INZ(%PADDR(My_Proc))
*
* Define pointers in a multiple occurence data structure and map out

* the storage.
*

DDataS DS OCCURS(2)
D ptrl *

D ptr2

D Switch 1A

Figure 44 (Part 1 of 2). Defining pointers

ILE RPG/400 Reference

*

* Storage map would be:

*

* DataS

*

*

* ptrl 16 bytes
*

* ptr2 16 bytes
*

* Switch 1 byte
*

* Pad 15 bytes
*

* ptrl 16 bytes
*

* ptr2 16 bytes
* v

* Switch 1 byte
*

*

Figure 44 (Part 2 of 2). Defining pointers

Unsupported Database Data-Types
The ILE RPG/400 compiler tolerates null-capable fields and variable-length fields.

/Nisll OCanahl
/ 1] i

Ei
wvapav]

alde
icivu

n
\ <9

Null-capable fields containing null values in a database file can be read into your
ILE RPG/400 program if you specify the *YES value on the ALWNULL keyword of
the CRTRPGMOD or CRTBNDRPG commands. Currently, null value support only
applies to externally described input-only files (files with no addition specified on the

file specification).

When an externally described file contains null-capable fields and *NO is specified
on the ALWNULL keyword, the following conditions apply:

* A record containing null values retrieved from an input or update file will cause
a data mapping error and an error message will be issued.

e Data in the record is not accessible and none of the fields in the record can be
updated with the values from the input record containing null values.

* The ILE RPG/400 compiler is not able to place null values in null-capable fields
for updating or adding a record. If you want to place null values in null-capable
fields, you can use SQL/400 or other products which have full support of null
values.

When an externally described input-only file contains null-capable fields and *YES
is specified on the ALWNULL keyword, the following conditions apply:

* When a record is retrieved from a database file and there are some fields con-
taining null values in the record, database default values for the null-capable
fields will be placed into those fields containing null values. The default value
will be the user defined DDS defaults or system defaults.

Chapter 7. Data Types and Data Formats 113

¢ Control-level indicators, match-field entries and field indicators are not allowed
on an input specification if the input field is a null-capable field from an
externally described input-only file.

e Keyed operations are not allowed when factor 1 on a keyed input calculation
operation corresponds to a null-capable key field in an externally described
input-only file.

» Sequential-within-limits processing is not allowed when a file contains null-
capable key fields.

Note: For a program-described file, a null value in the record always causes a
data mapping error, regardless of the value specified on the ALWNULL keyword.

Variable-Length Fields

114

By specifying *VARCHAR (for variable length character fields) or *VARGRAPHIC
(for variable length graphic fields) on the CVTOPT keyword of the CRTRPGMOD or
CRTBNDRPG commands, the ILE RPG/400 compiler will internally define variable-
length fields from an externally described file or data structure as an ILE RPG/400
fixed-length character field. When *VARCHAR or *VARGRAPHIC is not specified,
variable-length fields are ignored and inaccessible in ILE RPG/400 programs. For
more information, see the CVTOPT keyword description in the ILE RPG/400 Pro-
grammer's Guide.

The following conditions apply when *Y¥ARCHAR or *VARGRAPHIC is specified on
the CRTRPGMOD or CRTBNDRPG command:

* |f a variable-length field is extracted from an externally de

b‘)(l.t,'llldlly UUbblIUUU Udld buuuure, Il Ib ueuareu in an iL
as a fixed-length character field.

» For single-byte character fields, the length of the declared ILE RPG/400 field is
the length of the DDS field plus 2 bytes.

e For DBCS-graphic data fields, the length of the declared RPG/400 field is two
times the length of the DDS field plus 2 bytes.

¢ The two extra bytes in the ILE RPG/400 field contain a binary number which
represents the current length of the variable-length field. Figure 45 on
page 115 shows the ILE RPG/400 field length of variable-length fields.

escribed file or an
= """G’ 00 program

* For variable-length graphic fields defined as fixed-length character fields, the
length is measured in double bytes.

ILE RPG/400 Reference

Single-byte character fields:

— | length | character-data —>

BIN(2) CHAR(N)

N = declared Tength in DDS

2 + N = field length

Graphic data type fields:

— | length graphic-data —

BIN(2) CHAR(2(N))

N = declared length in DDS = number of double bytes
2 +2(N) = field Tength

Figure 45. ILE RPG/400 Field Length of Variable-Length Fields

* Your ILE RPG/400 program can perform any valid character calculation oper-
ations on the declared fixed-length field. However, because of the structure of
the field, the first two bytes of the field must contain valid binary data. An I/O
exception error will occur for an output operation if the first two bytes of the
field contain invalid field length data.

» Control-level indicators, match field entries, and field indicators are not allowed
on an input specification if the input field is a variable-length field from an
externally described input file.

¢ Sequential-within-limits processing is not allowed when a file contains variable-
length key fields.

» Keyed operations are not allowed when factor 1 of a keyed operation corre-
sponds to a variable-length key field in an externally described file.

* If you choose to selectively output certain fields in a record and the variable-
length field is not specified on the output specification, or if the variable-length
field is ignored in the ILE RPG/400 program, the ILE RPG/400 compiler will
place a default value in the output buffer of the newly-added record. The
default is 0 in the first two bytes and blanks in all of the remaining bytes.

* [f you want to change variable-length fields, ensure that the current field length
is correct. One way to do this is:

1. Define a data structure with the variable-length field name as a subfield
name.

2. Define a 4-digit binary subfield overlaying the beginning of the field, and
define an N-byte character subfield overlaying the field starting at position
3.

3. Update the field.

Chapter 7. Data Types and Data Formats 115

116

Alternatively, you can move another variable-length field left-aligned into the
field. An example of how to change a variable-length field in an ILE RPG/400
program follows.

R A G B C . SR R NP TR | B R A 4
Ax*

Ax File MASTER contains a variable length field

Ax*
AANOINO2NO3T.Name++++++RTen++TDpBLinPosFunctions+++++ttttttttttttttt+
A*

A R REC

A FLDVAR 100 VARLEN

N A S . R T S A R O BT PO A

F*

Fx Externally described file name is MASTER.

F+ Compile the RPG/400 program with CVTOPT(xVARCHAR).

F*
FFilename++IPEASFRTen+LKlen+AIDevice+.Keywords+++++tttttttttttttttttttttt
Fx*

FMASTER UF E DISK

D*

D* FLDVAR 1is a variable-length field defined in DDS with

D+ a DDS length of 100. Notice that the RPG field length

D+ is 102.

D*

DName+++++++++++ETDSFrom+++To/L+++1Dc. Keywords++++++++ttttttttttttttt+++
D*

D DS

D FLDVAR 1 102

D FLDLEN 4B 0 OVERLAY(FLDVAR:1)

D FLDCHR 100 OVERLAY (FLDVAR:3)

T R S T O N E TS T N R S A

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C* A character value is moved to the variable Tength field FLDCHR.

C* After the CHECKR operation, FLDLEN has a value of 5.

c READ MASTER LR
c MOVEL 'SALES' FLDCHR

c v CHECKR FLDCHR FLDLEN

C NLR UPDAT REC

Figure 46. Changing a Variable-Length Field in an ILE RPG/400 Program

If variable-length graphic fields are required, you can code a 2-byte binary field to
hold the length, and a 2(N) length subfield to hold the data portion of the field.

ILE RPG/400 Reference

D*
D* The variable-Tength graphic field VGRAPH is declared in the
D= DDS as length 3. This means the maximum Tength of the field
D# is 3 double bytes, or 6 bytes. The total Tength of the field,
D* counting the length portion, is 8 bytes.

D*

D+ Compile the ILE RPG/400 program with CVTOPT(*VARGRAPHIC).

D*

DName+++++++++++ETDs From+++To/ L+++1DC . Keywords++tttttttttttttttttt bttt
D*

D DS

DVGRAPH 8

D VLEN 4B 0 OVERLAY(VGRAPH:1)

D VDATA 3G OVERLAY(VGRAPH:3)

2N P SR S B TR S . S ST < RN P A
C*

C+ Assume GRPH is a fixed length graphic field of Tength 2
C+ double bytes. Copy GRPH into VGRAPH and set the length of
C+ VGRAPH to 2.

C*

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C MOVEL GRPH VDATA

C Z-ADD 2 VLEN

Figure 47. Using a Variable-Length Graphic Field in an ILE RPG/400 Program

Error Handling for Database Data Mapping Errors
For any input or output operation, a data mapping error will cause a severe error
message to be issued. For blocked output, if one or more of the records in the
block contains data mapping errors and the file is closed before reaching the end of
the block, a severe error message is issued and a system dump is created.

Chapter 7. Data Types and Data Formats 117

118 ILE RPG/400 Reference

Chapter 8. Literals and Named Constants

Literals and named constants are types of constants. Constants can be specified
in factor 1 or factor 2 of certain operations and in the constant field of output spec-
ifications. Constants can also be used with keywords on the definition specification.

Literals

A literal is a self-defining constant that can be referred to in a program. A literal
can belong to any of the RPG IV data types.

Character Literals

The following are the rules for specifying a character literal:

Any combination of characters can be used in a character literal. This includes
DBCS characters. DBCS characters must be enclosed by shift-out and shift-in
characters and must be an even number of bytes. Embedded blanks are valid.
Character literals must be enclosed in apostrophes ().

An apostrophe required as part of a literal is represented by two apostrophes.
For example, the literal O’'CLOCK is coded as ‘O”’CLOCK..

Character literals are compatible only with character data

Hexadecimal Literals

The following are the rules for specifying a hexadecimal literal:

Hexadecimal literals take the form:

X'x1x2...xn'

Where X'x1x2...xn' can only contain the characters A-F, a-f, and 0-9.

The literal coded between the apostrophes must be of even length.

Each pair of characters defines a single byte.

Hexadecimal literals are allowed anywhere that character literals are supported
except as factor 2 of ENDSR and as edit words.

Except when used in the bit operations BITON, BITOFF, and TESTB, a
hexadecimal literal has the same meaning as the corresponding character
literal. For the bit operations, factor 2 may contain a hexadecimal literal repres-
enting 1 byte. The rules and meaning are the same for hexadecimal literals as
for character fields.

If the hexadecimal literal contains the hexadecimal value for a single quote, it
does not have to be specified twice, unlike character literals. For example, the
literal

A'B

is specified as

AR

but the hexadecimal version is X'C17DC2"' not X'C17D7DC2".
Hexadecimal literals are compatible only with character data

Numeric Literals

The following are the rules for specifying a numeric literal:

© Copyright IBM Corp. 1994

119

120

¢ A numeric literal consists of any combination of the digits 0 through 9. A
decimal point or a sign can be included.

¢ The sign (+ or -), if present, must be the leftmost character. An unsigned literal
is treated as a positive number.

* Blanks cannot appear in a numeric literal.

* Numeric literals are not enclosed in apostrophes ().

» Numeric literals are used in the same way as a numeric field, except that
values cannot be assigned to numeric literals.

¢ The decimal separator may be either a comma or a period

Date Literals

Date literals take the form D'xxxxxx' where:

¢ D indicates that the literal is of type date
e xxxxxx is a valid date in the format specified on the control specification
* XXXXXX is enclosed by apostrophes

Time Literals

Time literals take the form T'xxxxxx' where:

¢ T indicates that the literal is of type time
e XxxxxX is a valid time in the format specified on the control specification
e XXxxxX is enclosed by apostrophes

Timestamp Literals

¢ Z indicates that the literal is of type timestamp

e yyyy-mm-dd is a valid date (year-month-day)

e hh.mm.ss.mmmmmm is a valid time (hours.minutes.seconds.microseconds)
e yyyy-mm-dd-hh.mm.ss.mmmmmm is enclosed by apostrophes

¢ Microsecond are optional and if not specified will default to zeros

Graphic Literals

Graphic literals take the form G'oK1K2i' where:

e G indicates that the literal is of type graphic

¢ 0 is a shift-out character

¢ K1K2 is an even number of bytes and does not contain a shift-out or shift-in
character

e | is a shift-in character

e 0K1K2i is enclosed by apostrophes

Named Constants
A named constant is a symbolic name assigned to a literal. Named constants are

defined on definition specifications. The value of a named constant follows the
rules specified for literals.

ILE RPG/400 Reference

Figurative Constants

Named Constants

You can give a name to a constant. This name represents a specific value which
cannot be changed when the program is running.

Rules for Named Constants

» Named constants can be specified in factor 1, factor 2, and extended factor 2
on the calculation specifications, as parameters to keywords on the control
specification, as parameters to built-in functions, and in the Field Name, Con-
stant, or Edit Word fields in the output specifications. They can also be used
as array indexes and as the format name in a WORKSTN output specification
or with keywords on the definition specification.

» Numeric named constants have no predefined precision. Actual precision is
defined by the context that is specified.

» The named constant can be defined anywhere on the definition specifications.

Example of Defining a Named Constant

LN RS AN I R SO S O T S R P A R
DName+++++++++++ETDSFrom+++T0/L+++IDC. Keywords++++++ttttttttttttttttttttttt
Dttt it i i i st Keywords++++++++ttt+t+ttttttttttt++++

*
% Define a date field and initialize it to the 3rd of September
* 1988,

*

D DateField S D INz(D'1988-09-03')
*

%= Define a binary 9,5 field and initialize it to 0.

*
D BIN9_ 5 S 9B 5 INZ

*

% Define a named constant whose value is the lTower case alphabet.

D Lower c CONST('abcdefghi jk1mnop-
D qrstuvwxyz')
*

% Define a named constant without explicit use of the keyword CONST.
*

D Upper c "ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Figure 48. Defining named constants

Figurative Constants

The figurative constants *BLANK/*BLANKS, *ZERO/*ZEROS, *HIVAL, *LOVAL,
*NULL, *ALL'x..", *ALLG'oK1K2i' *ALLX'x1.." and *ON/*OFF are implied literals that
can be specified without a length, because the implied length and decimal positions
of a figurative constant are the same as those of the associated field. (For
exceptions, see the following section, “Rules for Figurative Constants” on

page 122.)

Figurative constants can be specified in factor 1 and factor 2 of the calculation

specifications. The following shows the reserved words and implied values for figu-
rative constants:

Chapter 8. Literals and Named Constants 121

Figurative Constants

Reserved Words
*BLANK/*BLANKS
*ZERO/*ZEROS
*HIVAL

*LOVAL

*ALL'..

*ALLG'oK1K2i'
*ALLX'x1..!

*NULL
*ON/*OFF

Implied Values

All blanks. Valid only for character or graphic fields
Character/numeric fields: All zeros.

Character or graphic fields: The highest collating character for
the system (hexadecimal FFs).

Numeric fields: All nines with a positive sign.

Date, time and timestamp fields: See “Date Data” on

page 105, “Time Data” on page 107 and “Timestamp Data”
on page 108 for *HIVAL values for date, time, and timestamp
data.

Character or graphic fields: The lowest collating character for
the system (hexadecimal zeros).

Numeric fields: All nines with a negative sign.

Date, time and timestamp fields: See “Date Data” on

page 105, “Time Data” on page 107 and “Timestamp Data”
on page 108 for *LOVAL values for date, time, and timestamp
data.

Character/numeric fields: Character string x . . is cyclically
repeated to a length equal to the associated field. If the field
is a numeric field, all characters within the string must be
numeric (0 through 9). No sign or decimal point can be speci-
fied when *ALL'x.." is used as a numeric constant.

Graphic fields: The graphic string K1K2 is cyclically repeated
to a length equal to the associated field.

Character fields: The hexadecimal literal X'x1.."is cyclically
repeated to a length equal to the associated field.

A null value valid for basing pointers or procedure pointers
*ON is all ones. *OFF is all zeros. Both are only valid for
character fields.

Rules for Figurative Constants
Remember the following rules when using figurative constants:

122

* MOVE and MOVEL operations allow moving a character figurative constant to
a numeric field. The figurative constant is first expanded as a zoned numeric
with the size of the numeric field, converted to packed or binary numeric if
needed, and then stored in the target numeric field. The digit portion of each
character in the constant must be valid. If not, a decimal data error will occur.

 Figurative constants are considered elementary items. Except for MOVEA, figu-
rative constants act like a field if used in conjunction with an array. For
example: MOVE *ALL'XYZ' ARR.

If ARR has 4-byte character elements, then each element will contain 'XYZX'.

* MOVEA is considered to be a special case. The constant is generated with a
length equal to the portion of the array specified. For example:

— MOVEA *BLANK ARR(X)
Beginning with element X, the remainder of ARR will contain blanks.
— MOVEA *ALL'XYZ' ARR(X)

ARR has 4-byte character elements. Element boundaries are ignored, as
is always the case with character MOVEA operations. Beginning with
element X, the remainder of the array will contain 'XYZXYZXYZ...".

ILE RPG/400 Reference

Figurative Constants

Note that the results of MOVEA are different from those of the MOVE example
above.

« After figurative constants are set/reset to their appropriate length, their normal
collating sequence can be altered if an alternate collating sequence is speci-
fied.

» The move operations MOVE and MOVEL produce the same result when
moving the figurative constants *ALL'x..!, *ALLG'0K1K2i', and *ALLX'x1..". The
string is cyclically repeated character by character (starting on the left) until the
length of the associated field is the same as the length of the string.

 Figurative constants can be used in compare operations as long as one of the
factors is not a figurative constant.

» The figurative constants, *BLANK/*BLANKS, are moved as zeros to a numeric
field in a MOVE operation.

Chapter 8. Literals and Named Constants 123

Figurative Constants

124 ILE RPG/400 Reference

Chapter 9. D

© Copyright IBM Corp. 1994

ata Structures

The RPG IV program allows you to define an area in storage and the layout of the
fields, called subfields, within the area. This area in storage is called a data struc-
ture. You define a data structure by specifying DS in positions 24 through 25 on a
definition specification.

You can use a data structure to:
» Define the same internal area multiple times using different data formats
» Operate on a field and change its contents
e Qperate on all the subfields as a group using the name of the data structure
» Define a data structure and its subfields in the same way a record is defined
¢ Define multiple occurrences of a set of data

» Group non-contiguous data into contiguous internal storage locations.

In addition, there are three special data structures, each with a specific purpose:

e A data area data structure (identified by a U in position 23 of the definition
specification)

« A file information data structure (identified by the keyword INFDS on a file
description specifications)

» A program-status data structure (identified by an S in position 23 of the defi-
nition specification).

Data structures can be program-described or externally-described.

A program-described data structure is identified by a blank in position 22 of the
definition specification. The subfield definitions for a program-described data struc-
ture must immediately follow the data structure definiton.

An externally-described data structure, identified by an E in position 22 of the defi-
nition specification, has subfield descriptions contained in an externally-described
file. At compile time, the ILE RPG/400 compiler uses the external name to locate
and extract the external description of the data structure subfields. You specify the
name of the external description either in positions 7 through 21, or as a parameter
for the keyword EXTNAME.

An external subfield name can be renamed in the program using the keyword
EXTFLD. The keyword PREFIX can be used to add a prefix to the external sub-
field names. Additional subfields can be added to an externally described data
structure by specifying program-described subfields immediately after the list of
external subfields.

125

Special Data Structures

Special Data Structures
Special data structures include:

e Data area data structures
+ File information data structures (INFDS)
e Program-status data structures.

Data Area Data Structure
A data area data structure, identified by a U in position 23 of the definition specifi-
cation, indicates to the RPG IV program that it should read in and lock the data
area of the same name at program initialization and should write out and unlock the
same data area at the end of the program. Data area data structures, as in all
other data structures, have the type character. A data area read into a data area
data structure must also be character. The data area and data area data structure
must have the same name unless you rename the data area within the RPG IV
program by using the *DTAARA DEFINE operation code or the DTAARA keyword.

You can specify the data area operations (IN, OUT, and UNLOCK) for a data area
that is implicitly read in and written out. Before you use a data area data structure
with these operations, you must specify that data area in the result field of the
*DTAARA DEFINE operation or with the DTAARA keyword.

A data area data structure cannot be specified in the result field of a PARM opera-
tion in the *ENTRY PLIST.

If you specify blanks for the data area data structure (positions 7 through 21 of the
definition specification that contains a U in position 23), the RPG IV program uses
the local data area. To provide a name for the local data area, use the *DTAARA
DEFINE operation, with *LDA in factor 2 and the name in the result field or
DTAARA(*LDA) on the definition specification.

File Information Data Structure
You can specify a file information data structure (defined by the keyword INFDS on
a file description specifications) for each file in the program. This provides you with
status information on the file exception/error that occurred. The file information
data structure name must be unique for each file. A file information data structure
contains predefined subfields that provide information on the file exception/error
that occurred. For a discussion of file information data structures and their sub-
fields, see “File Information Data Structure” on page 61.

Program-Status Data Structure
A program-status data structure, identified by an S in position 23 of the definition
specification, provides program exception/error information to the program. For a
discussion of program-status data structures and their predefined subfields, see
“Program Status Data Structure” on page 78.

126 ILE RPG/400 Reference

Data Structure Examples
The following examples show various uses for data structures and how to define

them.
Example Description
Figure 49 Using a data structure to subdivide a field
Figure 50 on page 128 Using a data structure to group fields
Figure 51 on page 129 Data structure with absolute and length notation
Figure 52 on page 129 Rename and initialize an externally described data structure
Figure 53 on page 130 Using PREFIX to rename all fields in an external data struc-
ture
Figure 54 on page 130 Defining a *LDA data area data structure
Figure 55 on page 131 Defining a multiple occurrence data structure
Figure 56 on page 131 Using data area data structures (1)
Figure 57 on page 132 Using data area data structures (2)
LI . . S T T T T O R PR A T -
DName+++++++++++ETDsFrom+++To/ L+++IDc. Keywords++++++++ttttttttttttttttttttt
Dttt i i i e i i e Keywords++++t++tttttttttttttttttttttt

*
* Use Tength notation to define the data structure subfields.

* You can refer to the entire data structure by using Partno, or by
* using the individual subfields Manufactr, Drug, Strength or Count.
*

Partno DS
Manufactr

Drug

Strength

Count

wwo H

*

* Records in program described file FILEIN contain a field, Partno,
* which needs to be subdivided for processing in this program.

* To achieve this, the field Partno is described as a data structure
* using the above Definition specification

*

IFILEIN NS 01 1CA 2 CB

I 3 18 Partno
I 19 29 Name
I 30 40 Patno

Figure 49. Using a Data structure to subdivide a field

Chapter 9. Data Structures 127

128

E R R S S B ST S S R T R TR O AU RN <
DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords+++++++tttttttttttttttt++++++
3 Keywords++++++t+tttttttttttttttt+t+++

*
* When you use a data structure to group fields, fields from

%= non-adjacent locations on the input record can be made to occupy
% adjacent internal locations. The area can then be referred to by
% the data structure name or individual subfield name.

*

D Partkey DS

D Location 4

D Partno 8

D Type 4

D

L RO DA ST IPIAE SOV S TN TP SUPUUIN : TEPUNE. DOV R SRR -
IFiTename++SqNORiPos1+NCCPOS2+NCCPOS3+NCC. v v e et ieie it ievne v rnennennnnnss
A Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr......

*

* Fields from program described file TRANSACTN need to be
* compared to the field retrieved from an Item_Master file
*

ITRANSACTN NS 61 1 C1 2 C2

22 25 Location

I 3 10 Partno
I 11 16 OQuantity
I 17 20 Type

I 21 21 Code

I

I

L R A . R T A O R TR T P A TR

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ...
*

* Use the data structure name Partkey, to compare to the field
* Item_Nbr
*

Partkey IFEQ Item_Nbr 99

OO0

Figure 50. Using a data structure to group fields

ILE RPG/400 Reference

L R A P R T SUM S D R Y A ST -
DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords+++++ttttttttrtttttttttrttttt

Deveiiniiiiiitiiietiatatonnnssnnsannas Keywords+++++++++t+t+ttttttt+tt++++++
. .

* Define a program described data structure called FRED

* The data structure is composed of 5 fields:

* 1. An array with element Tength 10 and dimension 70(Fieldl)
* 2. A field of Tength 30 (Field2)

* 3/4. Divide Field2 in 2 equal length fields (Field3 and Field4)
* 5. Define a binary field over the 3rd field

* Note the indentation to improve readability

*

*

* Absolute notation:

*

% The compiler will determine the array element length (Fieldl)
* by dividing the total length (700) by the dimension (70)

*
D FRED DS

D Fieldl 1 700 DIM(70)

D Field2 701 730

D Field3 701 715

D Field5 701 704B 2

D Fieldd 716 730

*

* Length notation:

*

* The OVERLAY keyword is used to subdivide Field2

*

D FRED DS

D Fieldl 106 DIM(70)

D Field2 30

D Field3 15 OVERLAY(Field2)

D Field5 4B 2 OVERLAY(Field3)

D Field4 15 OVERLAY(Field2:16)

Figure 51. Data structure with absolute and length notation

DName+++++++++++ETDSFrom+++To/L+++IDc . Keywords+++++tttttttttttttttttttttttt
Dt e e Keywords+++++++tttttttttttttttttttt++

*

* Define an externally described data structure with internal name

* FRED and external name EXTDS and rename field CUST to CUSTNAME

* Initialize CUSTNAME to 'GEORGE' and PRICE to 1234.89.

* Assign to subfield ITMARR (defined in the external decription as a
* 100 byte character field) the DIM keyword

*

D Fred E DS EXTNAME (EXTDS)

D CUSTNAME E EXTFLD(CUST) INZ('GEORGE')
D PRICE E INZ(1234.89)

D ITMARR E DIM(16)

Figure 52. Rename and initialize an externally described data structure

Chapter 9. Data Structures

129

LI R A G R R S T T O B IR A U .
DName+++++++++++ETDSFr0m+++T0/L+++IDC,Keyword5+++++++++++++++++++++++++++++
Divevinnnninnnn, P Keywords++++++++++++t+tttttttt+tH++++
D

D extdsl E DS EXTNAME (CUSTDATA)

D PREFIX (CU))

D Name E INZ ('Joe''s Garage')

D Custnum E EXTFLD (NUMBER)

D

*

* The previous data structure will expand as follows:

* -- A1l externally described fields are included in the data

* structure

-- Renamed subfields keep their new names

* -- Subfields that are not renamed are prefixed with the

* prefix string

*

* Expanded data structure:

*

D EXTDS1 E DS

D CU_NAME E 20A EXTFLD (NAME)

D INZ ('Joe''s Garage')
D CU_ADDR E 50A EXTFLD (ADDR)
D CUSTNUM E 9S0 EXTFLD (NUMBER)
D CU_SALESMN E 7P0 EXTFLD (SALESMN)

Figure 53. Using PREFIX to rename all fields in an external data structure

N R R T TP DUV SEPRPE UM TS DO R S A DT
DName+++++++++++ETDsFr0m+++TQ/L+++IDC_Keywords+++++++++++++++++++++++++++++
PP Keywords+++++++t+tttttttttttttttttt++
*

* Define a data area data structure based on the *LDA. The information

* in the data structure is composed of 2 fields. The first is a

% graphic array (30) of graphic character Tength 10 and the

* second is a Date field. The Date field is in *ISO format.

* The data structure is shown in absolute and length notation.

*

*

* Absolute notation:

*
D DS_IO uns
D Graf_fld 1 600G DIM(30)
D Date_f1d 601 610D

*
* Length notation:
*

D DS_IO uns DTAARA (*LDA)
D Graf_fld 166 DIM(30)
D Date_fld D

Figure 54. Defining a *LDA data area data structure

130 ILE RPG/400 Reference

L R T S ST EUUUE FOUR SRS A S ST T POy O R -
DName+++++++++++ETDSFrom+++T0/ L+++IDC . Keywords++++ttttttttttttttttttttttttst

Dttt i i it i it i i Keywords+++++t++tttttttttttttttttti++
*

* Define a Multiple Occurrence data structure of 20 elements with:
* -- 3 fields of character 20

* -- A 4th field of character 10 which overlaps the 2nd

* field starting at the second position.

*

* Named constant 'twenty' is used to define the occurrence

*

% Absolute notation (using begin/end positions)

*

D twenty c CONST(20)

D .

DDataStruct DS OCCURS (twenty)

D fieldl 1 20

D field2 21 40

D field2l 22 31

D field3 41 60

*
* Mixture of absolute and length notation
*

D DataStruct DS OCCURS (twenty)
D fieldl 20
D field2 20
D field2l 22 31
D field3 41 60

Figure 55. Defining a multiple occurrence data structure

LI R A P R T S O R T I Oy A SRR
HKeywords+++++tttttttttttttttttttt bbbttt bbbttt bbb

H DFTNAME (Programl)

H

L R A T B N T L O S O A T -
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++++tttttttttttttt++++
Dt e e Keywords+++++++tttttttttttttttttttttt

*
* This program uses a data area data structure to accumulate
* a series of totals.

*

D Totals ubs

D Tot_amount 82

D Tot_gross 10 2

D Tot_netto 10 2

LT T N T T B O S TR RTINS e e -

CLONO1Factorl+++++++0pcode (E) +Factor2+++++ttttttttttttttttttttttttttttttttt
*

C :

c EVAL Tot_amount = Tot_amount + amount
C EVAL Tot_gross = Tot_gross + gross
c EVAL Tot_netto = Tot_netto + netto

Figure 56. Using data area data structures (program 1)

Chapter 9. Data Structures

131

132

I O A . R T O T (B e A R .
HKeywords +++++++tttttttttttttttbbtbt bbb bbb bbb bbb bbb bbb bbb bbb

H DFTNAME (Program?2)

E R A . R T E T R O I R A TR -
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++t+tttttttttttttttttttt
3 Keywords+++++++++t+ttttttttttttttt++
*
% This program processes the totals accumulated in Programl.
* Program2 then uses the total in the subfields to do calculations.
*
D Totals uns
D Tot_amount 82
D Tot_gross 10 2
D Tot_netto 10 2
U R USRI . B U S . R T < BEE. O AR DU <

C :

C EVAL *IN91 = (Amount2 <> Tot_amount)
C EVAL *IN92 = (Gross2 <> Tot_gross)
C EVAL *IN93 = (Netto2 <> Tot_Netto)
C :

Figure 567. Using data area data structures (program 2)

ILE RPG/400 Reference

ARRAYS

Chapter 10. Using Arrays and Tables

Arrays and tables are both collections of data fields (elements) of the same:

¢ Field length

e Data type
— Character
— Numeric

— Date
— Timae

— Timestamp
— Graphic
— Basing Pointer
— Procedure Pointer
e Format
* Number of decimal positions (if numeric)

Arrays and tables differ in that:

e You can refer to a specific array element by its position

* You cannot refer to specific table elements by their position

e An array name by itself refers to all elements in the array

e A table name always refers to the element found in the last “LOOKUP (Look
Up a Table or Array Element)” operation

The next section describes how to code an array, how to specify the initial values
of the array elements, how to change the values of an array, and the special con-
siderations for using an array. The section after next describes the same informa-
tion for tables.

Arrays

There are three types of arrays:

* The run-time array is loaded by your program while it is running.

* The compile-time array is loaded when your program is created. The initial
data becomes a permanent part of your program.

e The prerun-time array is loaded from an array file when your program begins
running, before any input, calculation, or output operations are processed.

The essentials of defining and loading an array are described for a run-time array.
For defining and loading compile-time and prerun-time arrays you use these essen-
tials and some additional specifications.

Array Name and Index

© Copyright IBM Corp. 1994

You refer to an entire array using the array name alone. You refer to the individual
elements of an array using (1) the array name, followed by (2) a left parenthesis,
followed by (3) an index, followed by (4) a right parenthesis -- for example:
AR(IND). The index indicates the position of the element within the array (starting
from 1) and is either a number or a field containing a number.

The following rules apply when you specify an array name and index:

¢ The array name must be a unique symbolic name.

133

ARRAYS

* The index must be a numeric field or constant greater than zero and with zero
decimal positions

* If the array is specified within an expression in the extended factor 2 field, the
index may be an expression returning a numeric value with zero decimal posi-
tions

* At run time, if your program refers to an array using an index with a value that
is zero, negative, or greater than the number of elements in the array, then the
error/exception routine takes control of your program.

The Essential Array Specifications

You define an array on a definition specification. Here are the essential specifica-
tions for all arrays:

* Specify the array name in positions 7 through 21

* Specify the number of entries in the array using the DIM keyword

* Specify length, data format, and decimal positions as you would any scalar
fields. You may specify explicit From- and To-position entries (if defining a sub-
field), or an explicit Length-entry; or you may define the array attributes using
the LIKE keyword; or the attributes may be specified elsewhere in the program.

* If you need to specify a sort sequence, use the ASCEND or DESCEND
keywords.

Figure 58 shows an example of the essential array specifications.

Coding a Run-Time Array

If you make no further specifications beyond the essential array specifications, you
have defined a run-time array. Note that the keywords ALT, CTDATA, EXTFMT,
FROMFILE, PERRCD, and TOFILE cannot be used for a run-time array.

DName+++++++++++ETDSFrom+++To/L+++1Dc. Keywords++++++ttttttttttttttttttt+t
DARC S 3A DIM(12)

Figure 58. The Essential Array Specifications to Define a Run-Time Array

Loading a Run-Time Array

You can assign initial values for a run-time array using the INZ keyword on the
definition specification. You can also assign initial values for a run-time array
through input or calculation specifications. This second method may also be used
to put data into other types of arrays.

For example, you may use the calculation specifications for the MOVE operation to
put 0 in each element of an array (or in selected elements).

Using the input specifications, you may fill an array with the data from a file. The
following sections provide more details on retrieving this data from the records of a
file.

Note: Date and time runtime data must be in the same format and use the same
separators as the date or time array being loaded.

134 ILE RPG/400 Reference

ARRAYS

Loading a Run-Time Array in One Source Record
If the array information is contained in one record, the information can occupy con-
secutive positions in the record or it can be scattered throughout the record.

If the array elements are consecutive on the input record, the array can be loaded
with a single input specification. Figure 59 shows the specifications for loading an
array, INPARR, of six elements (12 characters each) from a single record from the
file ARRFILE.

DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++++tttttttttttttttt++

DINPARR S 12A DIM(6)
IFilename++SqNORiPoSI+NCCPOS2+NCCPOS3+NCC. ot vvievinieiinitrnnnennnennnnns
Lottt iiiinenns Fmt+SPFrom+To+++DcField+++++++++L1IMIFrPIMnZr. ...
IARRFILE AA 01

I 1 72 INPARR

Figure 59. Using a Run-Time Array with Consecutive Elements

If the array elements are scattered throughout the record, they can be defined and
loaded one at a time, with one element described on a specification line. Figure 60
shows the specifications for loading an array, ARRX, of six elements with 12 char-
acters each, from a single record from file ARRFILE; a blank separates each of the
elements from the others.

N DR AN . I T S, U O s DU T S
DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords+++++++++tttttttttttttt+++
DARRX) 12A DIM(6)
IFilename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. vt vv e ierinninennnenenannnns
) Fmt+SPFrom+To+++DcField+++++++++L1IM1FrP1MnZr. ...
IARRFILE AA 01

I 1 12 ARRX(1)

I 14 25 ARRX(2)

I 27 38 ARRX(3)

I 40 51 ARRX(4)

I 53 64 ARRX(5)

I 66 77 ARRX(6)

Figure 60. Defining a Run-Time Array with Scattered Elements

Loading a Run-Time Array Using Multiple Source Records

If the array information is in more than one record, you may use various methods to
load the array. The method to use depends on the size of the array and whether or
not the array elements are consecutive in the input records. The RPG IV program
processes one record at a time. Therefore the entire array is not processed until all
the records containing the array information are read and the information is moved
into the array fields. It may be necessary to suppress calculation and output oper-
ations until the entire array is read into the program.

“Chapter 10. Using Arrays and Tables 135

ARRAYS

Sequencing Run-Time Arrays

Run-time arrays are not sequence checked. If you process a SORTA (sort an
array) operation, the array is sorted into the sequence specified on the definition
specification (the ASCEND or DESCEND keywords) defining the array. If the
sequence is not specified, the array is sorted into ascending sequence. When the
high (positions 71 and 72 of the calculation specifications) or low (positions 73 and
74 of the calculation specifications) indicators are used in the LOOKUP operation,
the array sequence must be specified.

Coding a Compile-Time Array

A compile-time array is specified using the essential array specifications plus the
keyword CTDATA. You can specify the number of array entries in an input record
using the PERRCD keyword on the definition specification. If you do not specify
the PERRCD keyword, the number of entries defaults to 1. You can specify the
external data format using the “EXTFMT(code)” keyword. See the specifications in
Figure 61 on page 137.

Loading a Compile-Time Array

For a compile-time array, enter array source data into records in the program
source member. If you use the *ALTSEQ, *CTDATA, and *FTRANS keywords,
the array data may be entered in anywhere following the source records. If you do
not use those keywords, the array data must follow the source records, and any
alternate collating sequence or file translation records in the order in which the
compile-time arrays and tables were defined on the definition specifications. This
data is loaded into the array when the program is compiled. Until the program is

recomniled with new data the arrav will alwavg initiallv have the came valiies each
recompiiec with new aaita, ine array aways Infliany nave the same vaiues eacn

|||||

time you call the program unless the previous call ended with LR off.

Arrays can be described separately or in alternating format (with the ALT keyword).
Alternating format means that the elements of one array are intermixed on the input
record with elements of another array.

Rules for Array Source Records
The rules for array source records are:

¢ The first array entry for each record must begin in position 1.

¢ All elements must be the same length and follow each other with no intervening
spaces

¢ An entire record need not be filled with entries. If it is not, blanks or comments
can be included after the entries (see Figure 61 on page 137).

* |f the number of elements in the array as specified on the definition specifica-
tion is greater than the number of entries provided, the remaining elements are
filled with the default values for the data type specified.

136 ILE RPG/400 Reference

ARRAYS

**CTDATA ARC

48K16343J64044HComments can be placed here
12648A47349K346Comments can be placed here
50B125 Comments can be placed here

R TETTY TR A ST B T SO O D T DU O
DName+++++++++++ETDSsFrom+++To/L+++IDc. Keywords++++++t+rttttttttttt++
DARC 3A DIM(12) PERRCD(5) CTDATA

48K | 163 | 43J | 640 | 44H | 126 | 48A | 473 | 49K | 346 | 50B | 125

This is the compile-time array, ARC.

Figure 61. Array Source Record with Comments

Each record, except the last, must contain the number of entries specified with
the PERRCD keyword on the definition specifications. In the last record,
unused entries must be blank and comments can be included after the unused
entries.

Each entry must be contained entirely on one record. An entry cannot be split
between two records; therefore, the length of a single entry is limited to the
maximum length of 100 characters (size of source record). If arrays are used
and are described in alternating format, corresponding elements must be on the
same record; together they cannot exceed 100 characters.

For date and time compile-time arrays the data must be in the same format
and use the same separators as the date or time array being loaded.
Array data may be specified in one of two ways:
1. *CTDATA arrayname: The data for the array may be specified anywhere in
the compile-time data section.
2. **b: (b=blank) The data for the arrays must be specified in the same order
in which they are specified in the Definition specifications.

Only one of these techniques may be used in one program.

Arrays can be in ascending(ASCEND keyword), descending (DESCEND
keyword), or no sequence (no keyword specified).

For ascending or descending character arrays when ALTSEQ(*EXT) is speci-
fied on the control specification, the alternate collating sequence is used for the
sequence checking. If the actual collating sequence is not known at compile
time (for example, if SRTSEQ(*JOBRUN) is specified on the command param-
eter) the alternate collating sequence table will be retrieved at runtime and the
checking will occur during initialization at *INIT. Otherwise, the checking will be
done at compile time.

Graphic arrays will be sorted by hexadecimal values, regardless of the alternate
collating sequence.

If L or R is specified on the EXTFMT keyword on the definition specification,
each element must include the sign (+ or -). For example, an array with an
element size of 2 with L specified would require 3 positions in the source data
(+37-38+52-63).

Graphic data must be enclosed in shift-out and shift-in characters. If several
elements of graphic data are included in a single record (without intervening
nongraphic data) only one set of shift-out and shift-in characters is required for
the record. If a graphic array is defined in alternating format with a nongraphic
array, the shift-in and shift-out characters must surround the graphic data. If

Chapter 10. Using Arrays and Tables 137

ARRAYS

two graphic arrays are defined in alternating format, only one set of shift-in and
shift-out characters is required for each record.

Coding a Prerun-Time Array
On the definition specifications, in addition to the essential array specifications, you
can specify the name of the file with the array input data, using the FROMFILE
keyword. You can use the TOFILE keyword to specify the name of a file to which
the array is written at the end of the program. If the file is a combined file (speci-
fied by a C in position 17 of the file description specifications), the parameter for
the FROMFILE and TOFILE keywords must be the same. You can use the
PERRCD keyword to specify the number of elements per input record.

On the EXTFMT keyword, specify a P if the array data is in packed format, B if the
data is in binary format, L to indicate a sign on the left of a data element, or R to
indicate a sign on the right of a data element.

Specify a T in position 18 of the file description specifications for the file with the
array input data.

Compare the coding of two prerun-time arrays, a compile-time array, and a run-time
array in Figure 62 on page 139.

138 ILE RPG/400 Reference

ARRAYS

H DATFMT (*USA) TIMFMT (*HMS)

DName+++++++++++ETDs From+++To/L+++IDc. Keywords+++++++++++++++++++
D* Run-time array. ARI has 10 elements of type date. They are

D+ initialized to September 15, 1994. This is in month, day,

D* year format using a slash as a separator as defined on the

D* control specification.

DARI S D DIM(10) INZ(D'09/15/1994')
D* Compile-time arrays in alternating format. Both arrays have

D* eight elements (three elements per record). ARC is a character
D+ array of length 15, and ARD is a time array with a predefined
D+ length of 8.

DARC S 15 DIM(8) PERRCD(3)
D CTDATA

DARD S T DIM(8) ALT(ARC)
D

D* Prerun-time array. ARE, which is to be read from file DISKIN,
D* has 250 character elements (12 elements per record). Each

Dx element is five positions long. The size of each record

D+ is 60 (5*12). The elements are arranged in ascending sequence.

DARE S 5A DIM(250) PERRCD(12) ASCEND
D FROMFILE (DISKIN)

D*

D*

D* Prerun-time array specified as a combined file. ARH is written
D* back to the same file from which it is read when the program

D* ends normally with LR on. ARH has 250 character elements

D+ (12 elements per record). Each elements is five positions long.
D+ The elements are arranged in ascending sequence.

DARH S BA DIM(250) PERRCD(12) ASCEND
D FROMFILE (DISKOUT)
D TOFILE(DISKOUT)
**CTDATA ARC
Toronto 12:15:00Winnipeg 13:23:00Calgary 15:44:00
Sydney 17:24:30Edmonton 21:33:00Saskatoon 08:40:00
Regina 12:33:00Vancouver 13:20:00

Figure 62. Definition Specifications for Different Types of Arrays
Figure 62 shows the definition specifications required for several types of arrays.

For compile-time arrays, the TOFILE keyword can be used to specify a file to which
the array is to be written when the program ends with LR on. For prerun-time
arrays, the ALT keyword can be used to specify arrays in alternating format.

Loading a Prerun-Time Array

For a prerun-time array, enter array input data into a file. The file must be a
sequential program described file. When you call a program, but before any input,
calculation, or output operations are processed the array is loaded with initial
values from the file. By modifying this file, you can alter the array's initial values on
the next call to the program, without recompiling the program. The file is read in
arrival sequence. The rules for prerun-time array data are the same as for compile-
time array data, except there are no restrictions on the length of each record. See
“Rules for Array Source Records” on page 136.

Chapter 10. Using Arrays and Tables 139

- Initializing Arrays

Sequence Checking for Character Arrays
When sequence checking for character arrays occurs depends on whether and how
ALTSEQ has been specified and whether the array is compile time or prerun time.
The following table indicates when sequence checking occurs.

Control Specifica- ALTSEQ Used for When Sequence When Sequence

tion Entry SORTA, LOOKUP Checked for Checked for
and Sequence Compile Time Prerun Time
Checking Array Array

ALTSEQ(*NONE) No Compile time Run time

ALTSEQ(*SRC) No Compile time Run time

ALTSEQ(*EXT) Yes Compile time Run time

(known at compile

time)

ALTSEQ(*EXT) Yes Run time Run time

(known only at run

time)

Note: For compatibility with RPG Ill, SORTA and LOOKUP do not use the alter-
nate collating sequence with ALTSEQ(*SRC). If you want these operations to be
performed using the alternate collating sequence, you can define a table on the
system (object type *TBL), containing your alternate sequence. Then you can
change ALTSEQ(*SRC) to ALTSEQ(*EXT) on your control specification and specify
the name of your table on the SRTSEQ parameter of the create command.

Initializing Arrays

Run-Time Arrays
To initialize each element in a run-time array to the same value, specify the INZ
keyword on the definition specification. If the array is defined as a data structure
subfield, the normal rules for data structure initialization overlap apply (the initializa-
tion is done in the order that the fields are declared within the data structure).

Compile-Time and Prerun-Time Arrays
The INZ keyword cannot be specified for a compile-time or prerun-time array,
because their initial values are assigned to them through other means (compile-
time data or data from an input file). If a compile-time or prerun-time array appears
in a globally initialized data structure, it is not included in the global initialization.

Note:

Compile-time arrays are initialized in the order in which the data is declared after
the program, and prerun-time arrays are initialized in the order of declaration of
their initialization files, regardless of the order in which these arrays are declared in
the data structure. Pre-run time arrays are initialized after compile-time arrays.

If a subfield initialization overlaps a compile-time or prerun-time array, the initializa-

tion of the array takes precedence; that is, the array is initialized after the subfield,
regardless of the order in which fields are declared within the data structure.

140 ILE RPG/400 Reference

Defining Related Arrays

Defining Related Arrays

You can load two compile-time arrays or two prerun-time arrays in alternating
format by using the ALT keyword on the definition of the alternating array. You
specify the name of the primary array as the parameter for the ALT keyword. The
records for storing the data for such arrays have the first element of the first array
followed by the first element of the second array, the second element of the first
array followed by the second element of the second array, the third element of the
first array followed by the third element of the second array, and so on. Corre-
sponding elements must appear on the same record. The PERRCD keyword on
the main array definition specifies the number of corresponding pairs per record,
each pair of elements counting as a single entry. You can specify EXTFMT on
both the main and alternating array.

Figure 63 shows two arrays, ARRA and ARRB, in alternating format.

ARRA ARRB
(Part Number) (Unit Cost)

345126 373

38A437 498

39K143 1297

40B125 93

41C023 3998 Arrays ARRA and ARRB can be described
as two separate array files or as one

42D893 87 array file in alternating format.

43K823 349

44H111 697

45P673 898

46C732 47587

Figure 63. Arrays in Alternating and Nonalternating Format

The records for ARRA and ARRB look like the records below when described as
two separate array files.

This record contains ARRA entries in positions 1 through 60.

ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA
entry| entry| entry| entry| entry| entry| entry| entry| entry| entry

1..... /N 13....]19....025....|31....[37....|43....|49....|55....

Figure 64. Arrays Records for Two Separate Array Files

This record contains ARRB entries in positions 1 through 50.

Chapter 10. Using Arrays and Tables 141

Searching Arrays

ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB
entry| entry| entry| entry| entry| entry| entry| entry| entry| entry

1..... 6.t 11....]16....]|21....]26....|31....|36....|41....]46....

Figure 65. Arrays Records for One Array File

The records for ARRA and ARRB look like the records below when described as
one array file in alternating format. The first record contains ARRA and ARRB
entries in alternating format in positions 1 through 55. The second record contains
ARRA and ARRB entries in alternating format in positions 1 through 55.

ARRA | ARRB | ARRA | ARRB | ARRA | ARRB | ARRA | ARRB | ARRA | ARRB
entry| entry| entry| entry| entry| entry| entry| entry| entry| entry

1..... 1o.... /N 6..... 13....11....|19....]16....]25....|21....

DName+++++++++++ETDSFrom+++To/ L+++1Dc. Keywords++++++++++tttttttttt++
DARRA S 6A DIM(6) PERRCD(1) CTDATA
DARRB 5 0 DIM(6) ALT(ARRA)
DARRGRAPHIC 3G DIM(2) PERRCD(2) CTDATA
DARRC 3A DIM(2) ALT(ARRGRAPHIC)
DARRGRAPH1 3G DIM(2) PERRCD(2) CTDATA
DARRGRAPH2 3G DIM(2) ALT(ARRGRAPH1)

**CTDATA ARRA

345126 373

38A437 498

39K143 1297

40B125 93

41€023 3998

42D893 87

**CTDATA ARRGRAPHIC

oklk2k3iabcok4k5k6iabc

*%*CTDATA ARRGRAPH1

ok1k2k3k4k5k6klk2k3kak5k6i

Knnunmnunn

Searching Arrays

The LOOKUP operation can be used to search arrays. See “LOOKUP (Look Up a
Table or Array Element)” on page 385 for a description of the LOOKUP operation.

142 |ILE RPG/400 Reference

Searching Arrays

Searching an Array Without an Index

When searching an array without an index, use the status (on or off) of the
resulting indicators to determine whether a particular element is present in the
array. Searching an array without an index can be used for validity checking of
input data to determine if a field is in a list of array elements. Generally, an equal
LOOKUP is requested.

In factor 1 in the calculation specifications, specify the search argument (data for
which you want to find a match in the array named) and place the array name
factor 2.

In factor 2 specify the name of the array to be searched. At least one resulting
indicator must be specified. Entries must not be made in both high and low for the
same LOOKUP operation. The resulting indicators must not be specified in high or
low if the array is not in sequence (ASCEND or DESCEND keywords). Control
level and conditioning indicators (specified in positions 7 through 11) can also be
used. The result field cannot be used.

The search starts at the beginning of the array and ends at the end of the array or
when the conditions of the lookup are satisfied. Whenever an array element is
found that satisfies the type of search being made (equal, high, low), the resulting
indicator is set on.

Figure 67 shows an example of a LOOKUP on an array without an index.

7N S . SN TUNIE T SUNU DU DU U - SUNE Y R
FFilename++IPEASFR1en+LK1en+AIDevice+.Keywords++++t+t+tttttttttttttttttttt+
FARRFILE IT F 5 DISK

F*

DName+++++++++++ETDsFrom+++To/L+++1Dc . Keywords+++++++++tttttttttttttt+++
DDPTNOS S 5S © DIM(50) FROMFILE(ARRFILE)

D*

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
C+ The LOOKUP operation is processed and, if an element of DPTNOS equal
C+ to the search argument (DPTNUM) is found, indicator 20 is set on.

C DPTNUM LOOKUP DPTNOS 20

Figure 67. LOOKUP Operation for an Array without an Index

ARRFILE, which contains department numbers, is defined in the file description
specifications as an input file (I in position 17) with an array file designation (T in
position 18). The file is program described (F in position 22), and each record is 5
positions in length (5 in position 27).

In the definition specifications, ARRFILE is defined as containing the array
DPTNOS. The array contains 50 entries (DIM(50)). Each entry is 5 positions in
length (positions 33-39) with zero decimal positions (positions 41-42). One depari-
ment number can be contained in each record (PERRCD defaults to 1).

Chapter 10. Using Arrays and Tables 143

Using Arrays

Searching an Array with an Index
To find out which element satisfies a LOOKUP search, start the search at a partic-
ular element in the array. To do this type of search, make the entries in the calcu-
lation specifications as you would for an array without an index. However, in factor
2, enter the name of the array to be searched, followed by a parenthesized numeric
field (with zero decimal positions) containing the number of the element at which
the search is to start. This numeric constant or field is called the index because it
points to a certain element in the array. The index is updated with the element
number which satisfied the search or is set to 0 if the search failed.

You can use a numeric constant as the index to test for the existence of an
element that satisfies the search starting at an element other than 1.

All other rules that apply to an array without an index apply to an array with an
index.

Figure 68 shows a LOOKUP on an array with an index.

FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++tttttttttttttttttttttt

FARRFILE IT F 25 DISK

Fx*

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++++++++++++++++++++
DDPTNOS S 55 0 DIM(50) FROMFILE(ARRFILE)

DDPTDSC S 20A DIM(50) ALT(DPTNOS)

D*

CLONO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
Cx The Z-ADD operation begins the LOOKUP at the first element in DPTNOS.
(s Z-ADD 1 X 30

C+ At the end of a successful LOOKUP, when an element has been found

C* that contains an entry equal to the search argument DPTNUM,

C* indicator 20 is set on and the MOVE operation places the department

Cx description, corresponding to the department number, into DPTNAM.

c DPTNUM LOOKUP DPTNOS (X) 20
Cx If an element is not found that is equal to the search argument,

C+ element X of DPTDSC is moved to DPTNAM.

c IF NOT *IN20
c MOVE DPTDSC(X) DPTNAM 20
c ENDIF

Figure 68. LOOKUP Operation on an Array with an Index

This example shows the same array of department numbers, DPTNOS, as

Figure 67 on page 143. However, an alternating array of department descriptions,
DPTDSC, is also defined. Each element in DPTDSC is 20 positions in length. [f
there is insufficient data in the file to initialize the entire array, the remaining ele-
ments in DPTNOS are filled with zeros and the remaining elements in DPTDSC are
filled with blanks.

Using Arrays

Arrays can be used in input, output, or calculation specifications.

144 ILE RPG/400 Reference

Using Arrays

Specifying an Array in Calculations

An entire array or individual elements in an array can be specified in calculation
specifications. You can process individual elements like fields.

A noncontiguous array defined with the OVERLAY keyword cannot be used with
the MOVEA operation or in the result field of a PARM operation.

To specify an entire array, use only the array name, which can be used as factor 1,
factor 2, or the result field. The following operations can be used with an array
name: ADD, Z-ADD, SUB, Z-SUB, MULT, DIV, SQRT, ADDDUR, SUBDUR, EVAL,
EXTRCT, MOVE, MOVEL, MOVEA, MLLZO, MLHZO, MHLZO, MHHZO, DEBUG,
XFOOT, LOOKUP, SORTA, PARM, DEFINE, CLEAR, RESET, CHECK, CHECKR,
and SCAN.

Several other operations can be used with an array element only but not with the
array name alone. These operations include but are not limited to: BITON,
BITOFF, COMP, CABxx, TESTZ, TESTN, TESTB, MVR, DO, DOUxx, DOWxXx,
DOU, DOW, IFxx, WHENxx, WHEN, IF, SUBST, and CAT.

When specified with an array name without an index or with an asterisk as the
index (for example, ARRAY or ARRAY (*)) certain operations are repeated for each
element in the array. These are ADD, Z-ADD, EVAL, SUB, Z-SUB, ADDDUR,
SUBDUR, EXTRCT, MULT, DIV, SQRT, MOVE, MOVEL, MLLZO, MLHZO, MHLZO
and MHHZO. The following rules apply to these operations when an array name
without an index is specified:

» When factors 1 and 2 and the result field are arrays with the same number of
elements, the operation uses the first element from every array, then the
second element from every array until all elements in the arrays are processed.
If the arrays do not have the same number of entries, the operation ends when
the last element of the array with the fewest elements has been processed.
When factor 1 is not specified for the ADD, SUB, MULT, and DIV operations,
factor 1 is assumed to be the same as the result field.

* When one of the factors is a field, a literal, or a figurative constant and the
other factor and the result field are arrays, the operation is done once for every
element in the shorter array. The same field, literal, or figurative constant is
used in all of the operations.

e The result field must always be an array.

« If an operation code uses factor 2 only (for example, Z-ADD, Z-SUB, SQRT,
ADD, SUB, MULT, or DIV may not have factor 1 specified) and the result field
is an array, the operation is done once for every element in the array. The
same field or constant is used in all of the operations if factor 2 is not an array.

» Resulting indicators (positions 71 through 76) cannot be used because of the
number of operations being processed.

Note:
When used in an EVAL operation %ADDR(arr) and %ADDR(arr(*)) do not have the

same meaning. See “%ADDR (Get Address of Variable)” on page 264 for more
detail.

Chapter 10. Using Arrays and Tables 145

Array Output

Sorting Arrays
You can sort arrays using the “SORTA (Sort an Array)” on page 461 operation

code. The array is sorted into sequence (ascending or descending), depending on
the sequence specified for the array on the definition specification.

Sorting using part of the array as a key

You can use the OVERLAY keyword to overlay one array over another. For
example, you can have a base array which contains names and salaries and two
overlay arrays (one for the names and one for the salaries). You could then sort
the base array by either name or salary by sorting on the appropriate overlay array.

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++++tttttttt+++++++
D DS

D Emp_Info 50 DIM(500) ASCEND

D Emp_Name 45 OVERLAY (Emp_Info:1)
D Emp_Salary 9P 2 OVERLAY(Emp_Info:46)
D

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ...
C

Cx The following SORTA sorts Emp_Info by employee name.

C+ The sequence of Emp_Name is used to determine the order of the

C+ elements of Emp_Info.

(8 SORTA Emp_Name

C* The following SORTA sorts Emp_Info by employee salary

Cx The sequence of Emp_Salary is used to determine the order of the

C+ elements of Emp_Info.

c SORTA Emp_Salary

Figure 69. SORTA Operation with OVERLAY

Array Output

Entire arrays can be written out under RPG IV control only at end of program when
the LR indicator is on. To indicate that an entire array is to be written out, specify
the name of the output file with the TOFILE keyword on the definition specifications.
This file must be described as a sequentially organized output or combined file in
the file description specifications.

If the file is a combined file and is externally described as a physical file, the infor-
mation in the array at the end of the program replaces the information read into the
array at the start of the program. Logical files may give unpredictable results.

if an entire array is to be written to an output record (using output specifications),
describe the array along with any other fields for the record:

» Positions 30 through 43 of the output specifications must contain the array
name used in the definition specifications.

» Positions 47 through 51 of the output specifications must contain the record
position where the last element of the array is to end. If an edit code is speci-
fied, the end position must include blank positions and any extensions due to
the edit code (see “Editing Entire Arrays” listed next in this chapter).

146 ILE RPG/400 Reference

Tables

Output indicators (positions 21 through 29) can be specified. Zero suppress (posi-
tion 44), blank-after (position 45), and data format (position 52) entries pertain to
every element in the array.

Editing Entire Arrays

When editing is specified for an entire array, all elements of the array are edited. If
different editing is required for various elements, refer to them individually.

When an edit code is specified for an entire array (position 44), two blanks are
automatically inserted between elements in the array: that is, there are blanks to
the left of every element in the array except the first. When an edit word is speci-
fied, the blanks are not inserted. The edit word must contain all the blanks to be
inserted.

Tables

The explanation of arrays applies to tables except for the following differences:

Activity Differences

Defining A table name must be a unique symbolic name that begins with the
letters TAB.

Loading Tables can be loaded only at compilation time and prerun-time.

Using and Modifying table elements Only one element of a table is active at one
time. The table name is used to refer to the active element. An index
cannot be specified for a table.

Searching The LOOKUP operation is specified differently for tables.

LOOKUP with One Table

When a single table is searched, factor 1, factor 2, and at least one resulting indi-
cator must be specified. Conditioning indicators (specified in positions 7 through
11) can also be used.

Whenever a table element is found that satisfies the type of search being made
(equal, high, low), that table element is made the current element for the table If the
search is not successful, the previous current element remains the current element.

Before a first successful LOOKUP, the first element is the current element.

Resulting indicators reflect the result of the search. If the indicator is on, reflecting
a successful search, the element satisfying the search is the current element.

'LOOKUP with Two Tables

When two tables are used in a search, only one is actually searched. When the
search condition (high, low, equal) is satisfied, the corresponding elements are
made available for use.

Factor 1 must contain the search argument, and factor 2 must contain the name of
the table to be searched. The result field must name the table from which data is
also made available for use. A resuliing indicator must also be used. Control level
and conditioning indicators can be specified in positions 7 through 11, if needed.

The two tables used should have the same number of entries. If the table that is

searched contains more elements than the second table, it is possible to satisfy the
search condition. However, there might not be an element in the second table that

Chapter 10. Using Arrays and Tables 147

Tables

corresponds to the element found in the search table. Undesirable results can
occeur.

Note: If you specify a table name in an operation other than LOOKUP before a
successful LOOKUP occurs, the table is set to its first element.

CLONO1Factorl+++++++Opcode (E)+Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
C* The LOOKUP operation searches TABEMP for an entry that is equal to

Cx the contents of the field named EMPNUM. If an equal entry is

C* found in TABEMP, indicator 09 is set on, and the TABEMP entry and

C* its related entry in TABPAY are made the current elements.

C EMPNUM LOOKUP TABEMP TABPAY 09
C+ If indicator 09 is set on, the contents of the field named

C+ HRSWKD are multiplied by the value of the current element of

C+ TABPAY.

c IF *INO9
c HRSWKD MULT(H) TABPAY AMT 6 2
c ENDIF

Figure 70. Searching for an Equal Entry

Specifying the Table Element Found in a LOOKUP Operation
Whenever a table name is used in an operation other than LOOKUP, the table
name actually refers to the data retrieved by the last successful search. Therefore,
when the table name is specified in this fashion, elements from a table can be used
in calculation operations.

If the table is used as factor 1 in a LOOKUP operation, the current element is used
as the search argument. In this way an element from a table can itself become a
search argument.

The table can also be used as the result field in operations other than the LOOKUP
operation. In this case the value of the current element is changed by the calcu-
lation specification. In this way the contents of the table can be modified by calcu-
lation operations (see Figure 71).

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C ARGMNT LOOKUP TABLEA 20
C+ If element is found multiply by 1.5

Cx If the contents of the entire table before the MULT operation

Cx were 1323.5, -7.8, and 113.4 and the value of ARGMNT is -7.8,

C+ then the second element is the current element.

C+ After the MULT operation, the entire table now has the

C+ following value: 1323.5, -11.7, and 113.4.

C+ Note that only the second element has changed since that was

C* the current element, set by the LOOKUP.

c IF *IN20
c TABLEA MULT 1.5 TABLEA
C ENDIF

Figure 71. Specifying the Table Element Found in LOOKUP Operations

148 ILE RPG/400 Reference

Edit Codes

Chapter 11. Editing Numeric Fields

Editing provides a means of punctuating numeric fields, including the printing of
currency symbols, commas, periods, minus sign, and floating minus. It also pro-
vides for field sign movement from the rightmost digit to the end of the field,
blanking zero fields, spacing in arrays, date field editing, and currency symbol or
asterisk protection. A field can be edited by edit codes, or edit words.

When you print fields that are not edited, the fields appear exactly as they are inter-
nally represented. The following examples show why you may want to edit numeric
output fields.

Type of Field Field in the Com- Printing of Uned- Printing of
puter ited Field Edited Field

Alphanumeric JOHN T SMITH JOHN T SMITH JOHN T SMITH

Numeric 0047652 0047652 47652

(positive)

Numeric 004765K 004765K 47652-

(negative) :

The unedited alphanumeric field and the unedited positive numeric field are easy to
read when printed, but the unedited negative numeric field is confusing because it
contains a K, which is not numeric. The K is a combination of the digit 2 and the
negative sign for the field. They are combined so that one of the positions of the
field does not have to be set aside for the sign. The combination is convenient for
storing the field in the computer, but it makes the output hard to read. Therefore,
numeric fields need to be edited before they are printed.

Edit Codes

Edit codes provide a means of editing numeric fields according to a predefined
pattern. They are divided into three categories: simple (X, Y, Z), combination (1
through 4, A through D, J through Q), and user-defined (5 through 9). You enter
the edit code in position 44 of the output specifications for the field to be edited.

Simple Edit Codes

You can use simple edit codes to edit numeric fields without having to specify any
punctuation. These codes and their functions are:

* The X edit code ensures a hexadecimal F sign for positive fields. However,
because the system does this, you normally do not have to specify this code.
Leading zeros are not suppressed. The X edit code does not modify negative
numbers.

¢ The Y edit code is normally used to edit a 3- to 9-digit date field. It suppresses
the leftmost zeros of date fields, up to but not including the digit preceding the
first separator. Slashes are inserted to separate the day, month, and year.

The “DATEDIT (fmt{separator})” and “DECEDIT('value')” keywords on the control
specification can be used to alter edit formats.

e The Y edit code is not valid for *YEAR, *MONTH, and *DAY.

© Copyright IBM Corp. 1994 149

Edit Codes

* The Z edit code removes the sign (plus or minus) from and suppresses the
leading zeros of a numeric field. The decimal point is not placed in the field
and is not printed.

Combination Edit Codes
The combination edit codes (1 through 4, A through D, J through Q) punctuate a
numeric field.

The DECEDIT keyword on the control specification determines what character is
used for the decimal separator and whether leading zeroes are suppressed. The
decimal position of the source field determines whether and where a decimal point
is printed. [If decimal positions are specified for the source field and the zero
balance is to be suppressed, the decimal separator prints only if the field is not
zero. If a zero balance is not to be printed, a zero field prints as blanks.

When a zero balance is to be printed and the field is equal to zero, either of the
following is printed:

* A decimal separator followed by n zeros, where n is the number of decimal
places in the field
* A zero in the units position of a field if no decimal places are specified.

You can use a floating currency symbol or asterisk protection with any of the 12
combination edit codes. To specify a floating currency symbol, code the currency
symbol in positions 53-55 on the output specification, along with an edit code in
position 44 for the field to be edited. The floating currency symbol appears to the
left of the first significant digit. The floating currency symbol does not print on a
zero balance when an edit code is used that suppresses the zero balance. (A dollar
sign ($) is used as the currency symbol unless a currency symbol is specified with
the CURSYM keyword on the control specification.)

An asterisk constant coded in positions 53 through 55 of the output specifications
(*, along with an edit code for the field to be edited causes an asterisk to be
printed for each zero suppressed. A complete field of asterisks is printed on a zero
balance source field.

Asterisk fill and the floating currency symbol cannot be used with the simple (X, Y,
Z) or with the user-defined (5 through 9) edit codes.

A currency symbol can appear before the asterisk fill (fixed currency symbol). This
requires two output specifications with the following coding:

1. Place a currency symbol constant in position 53 of the first output specification.
The end position specified in positions 47-51 should be one space before the
beginning of the edited field.

2. In the second output specification, place the edit field in positions 30-43, an edit
code in position 44, end position of the edit field in positions 47-51, and *' in
positions 53-55.

When an edit code is used to print an entire array, two blanks precede each
element of the array (except the first element).

150 ILE RPG/400 Reference

Edit Codes

Table 14 summarizes the functions of the combination edit codes. The codes edit
the field in the format listed on the left. A negative field can be punctuated with no
sign, CR, a minus sign (-), or a floating minus sign as shown on the top of the

figure.

Table 14. Combination Edit Codes
Negative Balance Indicator

Prints Prints No Sign CR - Floating

with Zero Minus
Grouping Balance
Separator
Yes Yes 1 A J N
Yes No 2 B K 0
No Yes 3 C L P
No No 4 D M Q

User-Defined Edit Codes

IBM has predefined edit codes 5 through 9. You can use them as they are, or you
can delete them and create your own. For a description of the IBM-supplied edit
codes, see “Edit Descriptions” in Chapter 6 of the Programming Reference
Summary.

The user-defined edit codes allow you to handie common editing problems that
would otherwise require the use of an edit word. Instead of the repetitive coding of
the same edit word, a user-defined edit code can be used. These codes are system
defined by the CL command CRTEDTD (Create Edit Description).

When you edit a field defined to have decimal places, be sure to use an edit word
that has an editing mask for both the fractional and integer portions of the field.
Remember that when a user-defined edit code is specified in a program, any
system changes made to that user-defined edit code are not reflected until the
program is recompiled. For further information on CRTEDTD, see the Program-
ming: Control Language Reference.

Editing Considerations
Remember the following when you specify any of the edit codes:

» Edit fields of a non-printer file with caution. If you do edit fields of a non-printer
file, be aware of the contents of the edited fields and the effects of any oper-
ations you do on them. For example, if you use the file as input, the fields
written out with editing must be considered character fields, not numeric fields.

» Consideration should be given to data added by the edit operation. The
amount of punctuation added increases the overall length of the output field. If
these added characters are not considered, the output fields may overlap.

» The end position specified for output is the end position of the edited field. For
example, if any of the edit codes J through M are specified, the end position is
the position of the minus sign (or blank if the field is positive).

Chapter 11. Editing Numeric Fields 151

Edit Codes

Summary of Edit Codes
Table 15 summarizes the edit codes and the options they provide. A simplified
version of this table is printed above positions 45 through 70 on the output specifi-
cations. Table 16 on page 153 shows how fields look after they are edited.

Table 17 on page 154 shows the effect that the different edit codes have on the
same field with a specified end position for output. .

Table 15 (Page 1 of 2). Edit Codes

DECEDIT Keyword Parameter

Editi Commas Decimal Sign for L Y ‘'0,’ '0. Zero
Cod Point Negative Sup-
Balance press
1 Yes Yes No Sign .00or0 ,000r0 0,00 or 0 0.00 or 0 Yes
2 Yes Yes No Sign Blanks Blanks Blanks Blanks Yes
3 Yes No Sign .00or0 ,000r 0 0,00 or 0 0.00or 0 Yes
4 Yes No Sign Blanks Blanks Blanks Blanks Yes
5-91
A Yes Yes CR .00 0r0 ,00 or 0 0,00 or 0 0.00 or O Yes
B Yes Yes CR Blanks Blanks Blanks Blanks Yes
C Yes CR .000r0 ,00 0r 0 0,00 or 0 0.00 or 0 Yes
D Yes CR Blanks Blanks Blanks Blanks Yes
J Yes Yes - {minus) .00or0 ,00 or O 0,00 or 0 0.00 or 0 Yes
K Yes Yes - (minus) Blanks Blanks Blanks Blanks Yes
L Yes - (minus) .000r0 ,00 or 0 0,00 or 0 0.00 or O Yes
M Yes - (minus) Blanks Blanks Blanks Blanks Yes
N Yes Yes - (floating .000r0 ,000r0 0,00 or 0 0.00 or 0 Yes
minus)
0] Yes Yes - (floating Blanks Blanks Blanks Blanks Yes
minus)
P Yes - (floating .00o0r0 ,000r0 0,00 or 0 0.00 or 0 Yes
minus)

1These are the user-defined edit codes.

2The X edit code ensures a hexadecimal F sign for positive values. Because the system does this for you,
normally you do not have to specify this code.

3The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following
pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

4The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

152 ILE RPG/400 Reference

Edit Codes

Table 15 (Page 2 of 2). Edit Codes

DECEDIT Keyword Parameter
Edit| Commas Decimal Sign for " ‘0’ '0.! Zero
Code Point Negative Sup-
Balance press
Q Yes - (floating Blanks Blanks Blanks Blanks Yes
minus)
X2 ' Yes
Y3 Yes
74 Yes

1These are the user-defined edit codes.

2The X edit code ensures a hexadecimal F sign for positive values. Because the system does this for you,
normally you do not have to specify this code.

3The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following
pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

4The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

Table 16 (Page 1 of 2). Examples of Edit Code Usage
Positive Positive Negative Negative Zero Zero
Number- Number- Number- Number- Balance- Balance-
Two No Three No Two No

Edit Decimal Decimal Decimal Decimal Decimal Decimal

Codes Positions Positions Positions Positions Positions Positions

Unedited 1234567 1234567 00012b5 00012h5 000000 000000

1 12,345.67 1,234,567 120 120 .00 0

2 12,345.67 1,234,567 .120 120

3 12345.67 1234567 120 120 .00 0

4 12345.67 1234567 120 120

5-91

A 12,345.67 1,234,567 .120CR 120CR .00 0

B 12.345.67 1,234,567 .120CR 120CR

C 12345.67 1234567 .120CR 120CR .00 0

D 12345.67 1234567 .120CR 120CR

J 12,345.67 1,234,567 .120- 120- .00 0

K 12,345,67 1,234,567 .120- 120-

L 12345.67 1234567 .120- 120- .00 0

Chapter 11. Editing Numeric Fields

153

Edit Codes

Table 16 (Page 2 of 2). Examples of Edit Code Usage
Positive Positive Negative Negative Zero Zero
Number- Number- Number- Number- Balance- Balance-
Two No Three No Two No
Edit Decimal Decimal Decimal Decimal Decimal Decimal
Codes Positions Positions Positions Positions Positions Positions
M 12345.67 1234567 .120- 120-
N 12,345.67 1,234,567 -.120 -120 .00 0
0o 12,345,67 1,234,567 -.120 -120
P 12345.67 1234567 -.120 -120 .00 0
Q 12345.67 1234567 -120 -120
Xz 1234567 1234567 00012bh5 00012h5 000000 000000
Y3 0/01/20 0/01/20 0/00/00 0/00/00
Z4 1234567 1234567 120 120
1 These edit codes are user-defined.
2 The X edit code ensures a hex F sign for positive values. Because the system
does this for you, normally you do not have to specify this code.
3 The Y edit code suppresses the leftmost zeros of date fields, up to but not
including the digit preceding the first separator. The Y edit code also inserts
slashes (/) between the month, day, and year according to the following pattern:
nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn Format used with M, D or blank in position 19
nnn/nn/nnnn - Format used with M, D or blank in position 19
nnnn/nn/nn Format used with Y in position 19
nnnnn/nn/nn Format used with Y in position 19
4 The Z edit code removes the sign (plus or minus) from a numeric field and sup-
presses leading zeros of a numeric field.
5 The b represents a blank. This may occur if a negative zero does not correspond
to a printable character.
Table 17 (Page 1 of 2). Effects of Edit Codes on End Position
Negative Number, 2 Decimal Positions. End Position
Specified as 10.
Output Print Positions
Edit Code 3 4 5 6 7 8 9 10 11
Unedited 0 0 4 1 K1
1 4 . 1 2
1K represents a negative 2.
2These are user-defined edit codes.
154 ILE RPG/400 Reference

Edit Words

Table 17 (Page 2 of 2). Effects of Edit Codes on End Position

Negative Number, 2 Decimal Positions. End Position

Specified as 10.

Output Print Positions
Edit Code 3 4 5 6 7 8 9 10 11
2 4 1 2
3 4 1
4 4 1 2
5-92
A 4 1 2 C R
B 4 1 2 C R
C 4 1 2 C R
D 4 1 2 C R
J 4 1 2 -
K 4 1 2 -
L 4 1 2 -
M 4 1 2 -
N - 4 1 2
(0] - 4 1 2
P - 4 1 2
Q - 4 1 2
X 0 0 4 1 K1
Y 0 / 4 1 / 2
4 4 1
1K represents a negative 2.
2These are user-defined edit codes.

Edit Words

If you have editing requirements that cannot be met by using the edit codes

described above, you can use an edit word. An edit word is a character literal or a
named constant specified in positions 53 - 80 of the output specification. It

describes the editing pattern for an numeric and allows you to directly specify:

¢ Blank spaces

e Commas and decimal points, and their position

e Suppression of unwanted zeros

* Leading asterisks

* The currency symbol, and its position

e Addition of constant characters

* Output of the negative sign, or CR, as a negative indicator.

The edit word is used as a template, which the system applies to the source data

to produce the output.

Chapter 11. Editing Numeric Fields

155

Edit Words

The edit word may be specified directly on an output specification or may be speci-
fied as a named constant with a named constant name appearing in the edit word
field of the output specification.

Named constants, used as edit words, are limited to 115 characters.

How to Code an Edit Word

To use an edit word, code the output specifications as shown below:

Position Entry

21-29 Can contain conditioning indicators.

30-43 Contains the name of the numeric field from which the data that is to
be edited is taken.

44 Edit code. Must be blank, if you are using an edit word to edit the
source data.

45 A “B” in this position indicates that the source data is to be set to

zero or blanks after it has been edited and output. Otherwise the
source data remains unchanged.
47-51 Identifies the end (rightmost) position of the field in the output record.
53-80 Edit word. Can be up to 26 characters long and must be enclosed by
apostrophes, unless it is a named constant. Enter the leading apos-
trophe, or begin the named constant name in column 53. The edit
word, unless a named constant, must begin in column 54.

Parts of an Edit Word

An edit word (coded into positions 53 to 80 of the output specmcatlo) nsists of

by d the o fa PR
three parts: the body, the status, and the expansion. The following shows

parts of an edit word:

Body Status Expansion

The body is the space for the digits transferred from the source data field to the
output record. The body begins at the leftmost position of the edit word. The
number of blanks (plus one zero or an asterisk) in the edit-word body must be
equal to or greater than the number of digits of the source data field to be edited.
The body ends with the rightmost character that can be replaced by a digit.

The status defines a space to allow for a negative indicator, either the two letters
CR or a minus sign (-). The negative indicator specified is output only if the source
data is negative. All characters in the edit word between the last replaceable char-
acter (blank, zero suppression character) and the negative indicator are also output
with the negative indicator only if the source data is negative; if the source data is
positive, these status positions are replaced by blanks. Edit words without the CR
or - indicators have no status positions.

156 ILE RPG/400 Reference

Edit Words

The status must be entered after the last blank in the edit word. If more than one
CR follows the last blank, only the first CR is treated as a status; the remaining
CRs are treated as constants. For the minus sign to be considered as a status, it
must be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered after the
status. Ampersands are replaced by blank spaces in the output; constants are
output as is. If status is not specified, the expansion follows the body.

Forming the Body of an Edit Word
The following characters have special meanings when used in the body of an edit
word:

Blank: Blank is replaced with the character from the corresponding position of the
source data field specified by the field name in positions 30 through 43 of the
output specifications. A blank position is referred to as a digit position.

Decimals and Commas: Decimals and commas are in the same relative position
in the edited output field as they are in the edit word unless they appear to the left
of the first significant digit in the edit word. In that case, they are blanked out or
replaced by an asterisk.

In the following examples below, all the leading zeros will be suppressed (default)
and the decimal point will not print unless there is a significant digit to its left.

Edit Word Source Data Appears in Output Record as:

"bbbbbbd 0000072 bbbbb72

"bbbbbbb.bb! 000000012 bbbbbbbh12

"bbbbbbb.bb 000000123 bbbbbb1.23
Zeros: The first zero in the body of the edit word is interpreted as an end-zero-
suppression character. This zero is placed where zero suppression is to end. Sub-
sequent zeros put into the edit word are treated as constants (see “Constants”
below).
Any leading zeros in the source data are suppressed up to and including the posi-
tion of the end-zero-suppression character. Significant digits that would appear in
the end-zero-suppression character position, or to the left of it, are output.

Edit Word Source Data Appears in Output Record as:

'bbbObbbbbb ' 00000004 bbbbh000004

"bhbObbbbbb ' 012345 bbbb012345

'bbbObbbbbb ' 012345678 Hb12345678

If the leading zeros include, or extend to the right of, the end-zero-suppression
character position, that position is replaced with a blank. This means that if you
wish the same number of leading zeros to appear in the output as exist in the
source data, the edit word body must be wider than the source data.

Chapter 11. Editing Numeric Fields 157

Edit Words

Edit Word Source Data Appears in Output Record as:

'Obbd ' 0156 b156

'Obbbb ' 0156 b0156
Constants (including commas and decimal point) that are placed to the right of the
end-zero-suppression character are output, even if there is no source data. Con-
stants to the left of the end-zero-suppression character are only output if the source
data has significant digits that would be placed to the left of these constants.

Edit Word Source Data Appears in Output Record as:

"bbbbbH0.bb ! 000000001 bbbbbbb.01

"bbbbbb0.bd ! 000000000 bbbbbbbh.00

'bbb,b0b.bb ' 00000012 bbbbHb0.12

"bbb,b0b.bb ' 00000123 bbbbbb1.23

'H0b,bbb.bb ' 00000123 bb0,001.23
Asterisk: The first asterisk in the body of an edit word also ends zero sup-
pression. Subsequent asterisks put into the edit word are treated as constants (see
“Constants” below). Any zeros in the edit word following this asterisk are also
treated as constants. There can be only one end-zero-suppression character in an
edit word, and that character is the first asterisk or the first zero in the edit word.
If an asterisk is used as an end-zero-suppression character, all leading zeros that
aro ciinnraccecad ara ranlarad with actaricke in tha aitdnit Ntharaien tha actariele
QIU DUPMPMIVOUUU QIU TUNIAVUU WILTT ADLWUTIONO 11T UIU VULPUL: W UITIWIOUT, UIT AaolTiion
suppresses leading zeros in the same way as described above for “Zeros”.

Edit Word Source Data Appears in Output Record as:

"*bbbbbb.bb ' 000000123 *hbbbb1.23

"bbbbb*h.bb 000000000 *R%0.00

"bbhbbb*h.bh**! 000056342 *IH563.42%*
Note that leading zeros appearing after the asterisk position are output as leading
zeros. Only the suppressed leading zeros, including the one in the asterisk position,
are replaced by asterisks.
Currency Symbol: A currency symbol followed directly by a first zero in the edit
word (end-zero-suppression character) is said to float. All leading zeros are sup-
pressed in the output and the currency symbol appears in the output immediately to
the left of the most significant digit.

Edit Word Source Data Appears in Output Record as:

"bb,bbb,b$0.bb ! 000000012 bbbbbbbbHS. 12

"bb,bbb,b$0.bb ! 000123456 bbbb$1,234.56

If the currency symbol is put into the first position of the edit word, then it will
always appear in that position in the output. This is called a fixed currency symbol.

158 ILE RPG/400 Reference

Edit Words

Edit Word Source Data Appears in Output Record as:

'$h,bbb,bb0.bb ' 000123456 $bbbh1,234.56

' $bb,bbb,000.bb 000000000 $hbbbbbbb00.00

'$b,bbb,*bb.bb" 000123456 $r++1,234.56
A currency symbol anywhere else in the edit word and not immediately followed by
a zero end-suppression-character is treated as a constant (see “Constants” below).
Ampersand: Causes a blank in the edited field. The example below might be
used to edit a telephone number. Note that the zero in the first position is required
to print the constant AREA.

Edit Word Source Data Appears in Output Record as:

'0AREA&bHH&NO.&bbb-bbbb '

4165551212

BAREAb416bNO.b555-1212

Constants: All other characters entered into the body of the edit word are treated
as constants. If the source data is such that the output places significant digits or
leading zeros to the left of any constant, then that constant appears in the output.
Otherwise, the constant is suppressed in the output. Commas and the decimal
point follow the same rules as for constants. Notice in the examples below, that
the presence of the end-zero-suppression character as well as the number of signif-
icant digits in the source data, influence the output of constants.

The following edit words could be used to print cheques. Note that the second
asterisk is treated as a constant, and that, in the third example, the constants pre-
ceding the first significant digit are not output.

Edit Word Source Data Appears in Output Record as:
' $bbbbbb*DOLLARS&HH&CTS' 000012345 a1 23*DOLLARSH45HCTS

' $bbbbbb*DOLLARS&DHECTS' 000000006 GrrekDOLLARSH06HCTS

' $bbbbbbb &DOLLARS&HH&CTS' 000000006 $hbbbbbbbbbbbbbbbHEHCTS

A date could be printed by using either edit word:

Edit Word Source Data Appears in Output Record as:
"bh/bb/ob 010388 H1/03/88
'Obb/bb/bb ! 010389 H01/03/89
Note that any zeros or asterisks following the first occurrence of an edit word are
treated as constants. The same is true for - and CR:
Edit Word Source Data Appears in Output Record as:
'550.66000" 01234 512.34000
"bb*.HH000" 01234 *12.34000

Chapter 11. Editing Numeric Fields 159

Edit Words

Forming the Status of an Edit Word
The following characters have special meanings when used in the status of an edit
word:

Ampersand: Causes a blank in the edited output field. An ampersand cannot be
placed in the edited output field.

CR or minus symbol: If the sign in the edited output is plus (+), these positions
are blanked out. If the sign in the edited output field is minus (-), these positions
remain undisturbed.

The following example adds a negative value indication. The minus sign will print
only when the value in the field is negative. A CR symbol fills the same function as

a minus sign.
Edit Word Source Data Appears in Output Record as:
"bbbbbbb.bb-' 000000123- bbbbbb1.23-
"bbbbbbb.bb- ' 000000123 bbbbbv1.23b

Constants between the last replaceable character and the - or CR symbol will print
only if the field is negative; otherwise, blanks will print in these positions. Note the
use of ampersands to represent blanks:

Edit Word Source Data Appears in Output Record as:
'b,bbb,bb0.bH&30&DAY&CR' 000000123- bbbbbbbbb1.23630bDAYHCR
'b,bbb,bb0.bb&30&DAY&CR' 000000123 bbbbbbbbb1.23bbbbbbbbbb

Formatting the Expansion of an Edit Word

The characters in the expansion portion of an edit word are always written. The
expansion cannot contain blanks. If a blank is required in the edited output field,
specify an ampersand in the body of the edit word.

Constants may be added to print on every line:

Edit Word Source Data Appears in Output Record as:
'p,bb0.6b&CR&NET' 000123- bbbb1.23bCRHNET
'h,bb0.bb&CR&NET! 000123 bbbb1.23bbbbNET

Note that the CR in the middle of a word may be detected as a negative field value
indication. If a word such as SECRET is required, use the coding in the example

below.
Edit Word Source Data Appears in Output Record as:
'"vb0.6b&SECRET' 12345- 123.45bSECRET
'bb0.bb&SECRET' 12345 123.45H6bbbHET
'"5b0.6b&CR&AKSECRET' 12345 123.450b0bHSECRET

160 ILE RPG/400 Reference

Editing Externally Described Files

Summary of Coding Rules for Edit Words

The following rules apply to edit words:

Position 44 (edit codes) must be blank.

Positions 30 through 43 (field name) must contain the name of a numeric field.
An edit word must be enclosed in apostrophes, unless it is a named constant.
Enter the leading apostrophe or begin a named constant name in position 53.
The edit word itself must begin in position 54.

The edit word can contain more digit positions (blanks plus the initial zero or
asterisk) than the field to be edited, but must not contain less. If there are
more digit positions in the edit word than there are digits in the field to be
edited, leading zeros are added to the field before editing.

If leading zeros from the source data are desired, the edit word must contain
one more position than the field to be edited, and a zero must be placed in the
high-order position of the edit word.

In the body of the edit word only blanks and the zero-suppression stop charac-
ters (zero and asterisk) are counted as digit positions. The floating currency
symbol is not counted as a digit position.

When the floating currency symbol is used, the sum of the number of blanks
and the zero-suppression stop character (digit positions) contained in the edit
word must be equal to or greater than the number of positions in the field to be
edited.

Any zeros or asterisks following the leftmost zero or asterisk are treated as
constants; they are not replaceable characters.

Editing Externally Described Files

Edit codes must be specified in data description specifications (DDS), instead of the
RPG IV language, to edit output for externally described files. See the &ddsguidl.
for information on how to specify edit codes in the data description specifications.
However, if an externally described file, which has an edit code specified, is to be
written out as a program described output file, you must specify editing in the
output specifications. In this case, any edit codes in the data description specifica-
tions are ignored.

Chapter 11. Editing Numeric Fields 161

Editing Externally Described Files

162 ILE RPG/400 Reference

Initialization

Chapter 12. Initialization of Data and Initialization Subroutine

This chapter describes how data is initialized by ILE RPG/400.

Initialization

The initialization support provided by the RPG IV compiler consists of three parts:
the initialization subroutine, the CLEAR and RESET operation codes, and data
initialization.

Initialization Subroutine (*INZSR)

The initialization subroutine allows you to process calculation specifications before
1P output. It is declared like any other subroutine, but with the special name
*INZSR in factor 1. This subroutine will be automatically invoked at the end of the
initialization step in the RPG IV program before 1P output. You can enter any cal-
culations that you want in this subroutine except RESET, and it can also be called
explicitly by using an EXSR or CASxx operation code.

CLEAR and RESET Operation Codes

The CLEAR operation code sets a variable or all variables in a structure to its
default value. If you specify a structure (record format, data structure or array) all
fields in that structure are cleared in the order in which they are declared.

The RESET operation code sets a variable or all variables in a structure to their
initial value. The initial value for a variable is the value it had at the end of the
initialization step in the RPG IV cycle, after the initialization subroutine has been
invoked. You can use data structure initialization to assign initial values to sub-
fields, and then change the values during the running of the program, and use the
RESET operation code to set the field values back to their initial values. Because
the initial value is the value the variable had after the initialization subroutine is
executed, you can use the initialization subroutine to assign initial values to a vari-
able and then later use RESET to set the variable back to this initial value. This
applies only to the initialization subroutine when it is run automatically as a part of
the initialization step.

Data Initialization

Data is initialized with the “INZ{(constant)}” keyword on the definition specification.
You can specify an initial value as a parameter on the INZ keyword, or specify the
keyword without a parameter and use the default initial values. Default initial
values for the various data types are described in Chapter 7, “Data Types and
Data Formats.” See Chapter 10, “Using Arrays and Tables” for information on ini-
tializing arrays.

© Copyright IBM Corp. 1994 163

Initialization

164 ILE RPG/400 Reference

© Copyright IBM Corp. 1994

Specifications

This section describes the RPG IV specifications. First, information common to
several specifications, such as keyword syntax and continuation rules is described.
Next, the specifications are described in the order in which they must be entered in
your program. Each specification description lists all the fields on the specification
and explains all the possible entries.

165

166 ILE RPG/400 Reference

Chapter 13. General Information

RPG IV code is coded on a variety of specifications. Each specification has a spe-
cific set of functions.

The following illustration describes the specifications.

Note

The RPG IV source program must be entered into the system in the order
shown. Any of the specification types can be absent, but at least one must be
present.

**b

**% b

Compile-TimeArray and Table Data

** b

Alternate Collating Sequence Records

I @ Output

| @ Calculation

File Translationrecords

‘D Control

|o Input 7
|® Definition o
|@ File DescrptionJ

Figure 72. Order of the Types of Specifications in an RPG IV Source Program

© Copyright IBM Corp. 1994

Control (Header) specifications provide information about program generation
and running of the compiled program. Refer to Chapter 14, “Control
Specifications” for a description of the entries on this specification.

File description specifications define all files in the program. Refer to
Chapter 15, “File Description Specifications” for a description of the entries
on this specification.

Definition specifications define data used in your program. Arrays, tables,
data structures, subfields, constants, and stand-alone fields are defined on
this specification. Refer to Chapter 16, “Definition Specification” for a
description of the entries on this specification.

Input specifications describe records, and fields in the input files and indicate
how the records and fields are used by the program. Refer to Chapter 17,
“Input Specifications” for a description of the entries on this specification.

167

Calculation specifications describe calculations to be done by the program
and indicate the order in which they are done. Calculation specifications can
control certain input and output operations. Refer to Chapter 18, “Calcu-
lation Specifications” for a description of the entries on this specification.

[0 Output specifications describe the records and fields and indicate when they
are to be written by the program. Refer to Chapter 19, “Output
Specifications” for a description of the entries on this specification.

The RPG IV language consists of a mixture of position-dependent code and free
form code. Those specifications which support keywords (Control, File Description,
and Definition) allow free format in the keyword fields. The Calculation specification
allows free format with those operation codes which support extended factor 2.
Otherwise, RPG |V entries are position specific. To represent this, each illustration
of RPG IV code will be in listing format with a scale drawn across the top.

This reference contains a detailed description of the individual RPG IV specifica-
tions. Each field and its possible entries are described. Chapter 22, “Operation
Codes” describes the operation codes that are coded on the Calculation specifica-
tion, which is described in Chapter 18, “Calculation Specifications.”

Common Entries

The following entries are common to all RPG specifications:

e Positions 1-5 can be used for comments.
* Specification type (position 6). The following letter codes can be used:
Entry Specification Type
Control
File description
Definition
Input
Calculation
Output
omment Statements

Oo0OO~-om=T

— Position 7 contains an *'. This will denote the line as a comment line
regardless of any other entry on the specification.

— Position 6 - 80 is blank

 Positions 7 - 80 are blank and position 6 contains a valid specification. This is
a valid line, not a comment, and sequence rules are enforced.

Syntax of keywords

168

The notation for keywords is as follows:

Keyword{ (parameter {: parameter...})}

Keywords may have no parameters, optional parameters, required parameters, or a
combination of required and optional parameters.

Parameter(s) are enclosed in parentheses ().

The curly brackets {} are used to indicate optional parameters in the examples in
this document. They are not part of the keyword syntax.

The colon(:) is used to separate parameters.

ILE RPG/400 Reference

Continuation rules
The fields which may be continued are:

» The keywords field on the control specification
» The keywords field on the file description specification
» The keywords field on the definition specification

The Extended factor-2 field on the calculation specification

» The constant/editword field on the output specification

General rules for continuation are as follows:

» The continuation line must be a valid line for the specification being continued
(H, F, D, C, or O in position 6)

» Only blank lines, empty specification lines or comment lines are allowed
between continued lines

* The continuation can occur after a complete token. Tokens are

— Names (for example, keywords, file names, field names)
— Parentheses

— The separator character (:)

— Expression operators

— Built-in functions

— Special words

— Literals

« A continuation can also occur within a literal

— For character, date, time, and timestamp literals

- A hyphen (-) indicates continuation is in the first available position in
the continued field

- A plus (+) indicates continuation with the first nonblank character in or
past the first position in the continued field

— For graphic literals

- Either the hyphen (-) or plus (+) can be used to indicate a continuation.

- Each segment of the literal must be enclosed by shift-out and shift-in
characters.

- When the a graphic literal is assembled, only the first shift-out and the
last shift-in character will be included.

- Regardless of which continuation character is used for a graphic literal,
the literal continues with the first character after the shift-out character
on the continuation line. Spaces preceding the shift-out character are
ignored.

— For numeric literals

- No continuation character is used

- A numeric literal continues with a numeric character or decimal point on
the continuation line in the continued field

— For hexadecimal literals

- Either a hyphen (-) or a plus (+) can be used to indicate a continuation

- The literal will be continued with the first nonblank character on the
next line

Chapter 13. General Information 169

Control specification keyword field
The rule for continuation on the control specification is:

« The specification continues on or past position 6 of the next control specifica-
tion

Example

L R A T R O S T R P - TIPSO A U <
HKeywords++++++++++tttttttttttttttttttttttt bttt bttt bbb bbbt bbb+

H DATFMT(

H *MDY&

H)

File description specification keyword field
The rules for continuation on the file description specification are:

* The specification continues on or past position 44 of the next file description
specification

¢ Positions 7-43 of the continuation line must be blank

Example

T T e R O A F T R O s B PO AT SO -
FFilename++IPEASFR1en+LKTen+AIDevicet.Keywords+++++tttdtttttttttttttttttt

EXTLIND

(
*INU1

)

mmmm

Definition specification keyword field
The rules for continuation on the Definition specification are:

» The specification continues on or past position 44 of the next Definition specifi-
cation dependent on the continuation character specified

¢ Positions 7-43 of the continuation line must be blank

Example

170 ILE RPG/400 Reference

R R O T T R R LT RS U AP SO .
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++t+++t+ttttttttttt++

D Keywords-cont+++++ttttttttttttttttttt
DMARY c CONST(

D '"Mary had a little lamb, its -

D* Only a comment or a completely blank line is allowed in here

D fleece was white as snow.'

D

D* Numeric literal, continues with the first non blank in/past position 44
D*

DNUMERIC c 12345

D 67

D* Graphic named constant, must have shift-out in/past position 44
DGRAF c G'oAABBCCDDi+

D OEEFFGGi '

Calculation specification Extended Factor-2
The rules for continuation on the Calculation specification are:

* The specification continues on or past position 36 of the next Calculation spec-
ification

¢ Positions 7-35 of the continuation line must be blank

Example
N T O AU PO O S ST TEPIE UM SR SO A TR -
CLONO1Factorl+++++++Opcode (E)+Extended-factor2+++++++tttttttttttttttttttttt
C Extended-factor2-++++++++++++++++++++++H+H+H+++
C EVAL MARY='Mar